Rätsel zur Wahrscheinlichkeitsberechnung



  • volkard schrieb:

    ja, das lehrt die schule genau so. formeln statt einsicht. erkenne, welche formel passen könnte, sag das schlagwort und rechne, statt mathematik zu betreiben.
    krass ist es bei der wahrscheinlichkeitsrechnung und genau deshalb die vielen rätsel.

    deine falsche meinung stimmt nur deshalb mit deinem buch überein, weil du die nicht passende formel wählst und dann im buch prüfst, ob diese formel für sich genommen korrekt ist.

    Du machst es dir IMHO zu leicht. Ich finde das sehr einsichtig. Du kannst schon daraus, dass du den Jungen siehst, folgern, dass MM nicht vorliegt. Du kannst aber nicht folgern, dass die Wahrscheinlichkeiten auf die übrigen Fälle gleichverteilt sind. P(MM) ist natürlich schon 0, damit habe ich auch gerechnet.
    Es geht aber um die Wahrscheinlichkeit des am-Fenster-stehen. Wenn du zwei Jungen hast, ist es wahrscheinlicher, dass ein Junge am Fenster steht, wie wenn du noch ein Mädchen hast. Man muss sich
    1. überlegen, wie wahrscheinlich die Kombinationen sind
    2. mit welcher Wahrscheinlichkeit bei welcher Kombination wer am Fenster steht
    Ich habe es weiter oben für JJ untersucht.

    Dein Ansatz ist deshalb IMHO naiv, weil du dir nur überlegst "was kann es sein", aber du überlegst dir nicht, wer mit welcher Wahrscheinlichkeit am Fenster steht. Der Punkt ist der, dass die Information "du siehst nen Jungen" nicht gleichwertig ist mit "es gibt keine 2 Mädchen". Das zweitere ist nur ne Folgerung aus dem ersten. Aber man kann leicht einsehen, dass die nicht die selbe Wahrscheinlichkeit haben.



  • Ok, du hast es editiert, hab ich nicht mehr gemerkt.



  • volkard schrieb:

    aber du kannst doch coden. bau ne simulation und fertig ist die widerlegung deines ansatztes.

    Genau da haperts bei mir. Wie soll man dafür eine Simulation Coden? Mir fallen 2 Möglichkeiten ein:

    [I]
    1. erstelle 2 Kinder
    2. wähle eins, ist es ein Mädchen, so gehe zu 1.
    3. überprüfe das Geschlecht des anderen
    Ergbenis: 1/2

    [II]
    1. erstelle so lange 2 Kinder, bis mindestens ein Junge dabei ist
    2. wähle solange eins, bis es ein Junge ist
    3. überprüfe das Geschlecht des anderen
    Ergebnis: 2/3

    Wie wärs mit folgendem Spielchen: Ich wähle 2 Kugeln aus (entweder rot oder blau, beide mit einer Wahrscheinlichkeit von 50%). Eine zeig ich dir. Wenn du die Farbe der anderen errätst bekommst du von mir das 1,9fache deines Einsatzes.



  • Stammtischler schrieb:

    (es gibt die Möglichkeiten JM, MJ und JJ, in zwei der drei Fälle wäre es ein Mädchen)

    nee, es gibt mm, mj und jj. mj und jm sind das selbe. wenn man einen j sieht bleiben nur noch mj und jj d.h. mm fällt weg.



  • Erstell zufällig zwei Kinder
    Wähle zufällig Kind 1 oder 2
    Ist es ein Mädchen, beginne von vorne

    Andernfalls: Stelle fest, was das andere ist. Merke dir, wie oft das andere dann ein Junge oder Mädchen ist.

    EDIT: also dein erstes 🙂



  • manchmal, wenn ich den durchblick vollends verliere, ist es mir hilfreich, wahrscheinlichkeiten einfach nur als relative häufigkeiten bei großer anzahl der versuche zu sehen.

    ich baue zuerst eine million welten, die alle gleich sind bis auf die nachbarn. und ich setze auch eine million gleichverteilte nachbarsfamilien in die welten.

    also 250000 mit JJ und 250000 mit MM und 500000 mit MJ.

    "Nun sieht man am Fenster einen Jungen stehen, wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?"

    das bleibt doch jetzt dabei, daß ich die 250000 welten mit MM ausschließen muss.

    1/3 kömmt raus.

    oder, um es in die bedingte-wahrscheinlichkeiten-formel zu pressen:
    A := Es liegt JJ vor
    B := Ein Junge steht am Fenster
    und laut text ist B==100%.
    weitere rechnung müßte klappen, die formel stimmt ja.



  • Optimizer schrieb:

    A := Es liegt JJ vor
    B := Ein Junge steht am Fenster

    P(A | 😎 = P(A geschnitten 😎 / P(B) = (1/4) / (1/4 + 1/4 * 1/2 + 1/4 * 1/2) = 1/2

    Es ist also P(JJ) = 0.5, damit kann P(JM)+P(MJ) gar nicht mehr 2/3 sein. Das stimmt übrigens auch mit meinem Buch überein.

    Wo bitte steht bei Dir P(B)? Man sieht einen Jungen. Fertig. P(B)=1, das sichere Ereignis.

    Es steht nicht da: Man sieht jedes der Kinder mit WK xy und es handelt sich um einen Jungen, sondern einfach: Man sieht einen Jungen. Da gibt es keine bedingt Wahrscheinlichkeit.



  • edit 🤡



  • Jester schrieb:

    Wo bitte steht bei Dir P(B)? Man sieht einen Jungen. Fertig. P(B)=1, das sichere Ereignis.

    P(B) = 0 + 1/4 + 1/8 + 1/8 (für MM, JJ, JM, MJ)
    Es geht nicht darum, ob jetzt der Junge am Fenster steht. Das wäre natürlich eins. Es geht darum ob er am Fenster stehen würde, bei bestimmten Kombinationen.

    Da gibt es keine bedingt Wahrscheinlichkeit.

    IMHO auf jeden Fall. Erstens gibt es vier Möglichkeiten. Dann stellt sich auch noch in Abhängigkeit von (1) ein Kind mit einer gewissen Wahrscheinlichkeit ans Fenster. Warum sagt Google eigentlich so wenig über das Zwei-Jungen-Problem? Das ist doch ein absolut klassisches Beispiel. Ich kann mir nicht vorstellen, dass das in jedem Buch anders beschrieben wird. Wenn du es mir nur begründen kannst, warum ich jetzt was anderes glauben soll, ok. Aber im Moment kann ich es nicht einsehen, warum ich mein Buch verbrennen soll. 😞

    volkard schrieb:

    das bleibt doch jetzt dabei, daß ich die 250000 welten mit MM ausschließen muss.

    Warum? Magst du meinen Algorithmus nicht? Ich glaub, ich werd ihn mal implementieren.



  • using Random = System.Random;
    
    namespace ZweiJungen
    {
    	sealed class Program
    	{
    		private static void Main(string[] args)
    		{
    			Random rand = new Random();
    			int[] childs = new int[2];
    			int boyCount = 0;
    			int girlCount = 0;
    
    			// 0 = Junge, 1 = Mädchen
    			for( int i = 0;  i < 100000000;  ++i )
    			{
    				childs[0] = rand.Next() % 2;
    				childs[1] = rand.Next() % 2;
    				int choice = rand.Next() % 2;
    
    				// Es muss ja ein Junge am Fenster stehen
    				if( childs[choice] == 1 )
    					continue;
    
    				if( childs[(choice + 1) % 2] == 0 )
    					++boyCount;
    				else
    					++girlCount;
    			}
    
    			System.Console.Out.WriteLine("Jungen: " + boyCount);
    			System.Console.Out.WriteLine("Mädchen: " + girlCount);
    		}
    	}
    }
    
    Jungen: 25002404
    Mädchen: 24994204
    Drücken Sie eine beliebige Taste . . .
    


  • volkard schrieb:

    also 250000 mit JJ und 250000 mit MM und 500000 mit MJ.

    hier liegt dein fehler, du hast 250000 JJ, 250000 MM, 250000 MJ und 250000 JM.
    wenn du jetzt weisst, das erste kind ist ein junge, dann bleiben über: JJ und JM. MJ fällt weg, bei MJ ist das erste kind ein mädchen.
    => die chance ist 50/50



  • Meiner Meinung nach macht man, wenn man sagt die Wahrscheinlichkeit sei 2/3 folgenden Fehler.
    Angenommen man bekommt Nacbbarn und sieht ein Kind, es wäre nun Schwachsin zu sagen, die Wahrscheinlichkeit dass das andere Kind vom anderen Geschlecht ist 2/3 beträge. Man geht allerdings bereits davon aus, dass nur ein Junge dort stehen kann, also im Sinne von "entweder ein Junge steht am Fenster oder keiner".





  • P(anderes Kind J|J gesehen) = P(anderes Kind J und J gesehen)/P(J gesehen) = (1/4)/(3/4) = 1/3



  • ist das 2. kind nicht unabhängig vom ersten, genau wie 2 geworfene geldstücke?
    und hat somit p=0.5



  • borg schrieb:

    volkard schrieb:

    also 250000 mit JJ und 250000 mit MM und 500000 mit MJ.

    hier liegt dein fehler, du hast 250000 JJ, 250000 MM, 250000 MJ und 250000 JM.
    wenn du jetzt weisst, das erste kind ist ein junge, dann bleiben über: JJ und JM. MJ fällt weg, bei MJ ist das erste kind ein mädchen.
    => die chance ist 50/50

    Nein, Du hast nicht das erste gesehen, sondern eines davon.



  • Jester schrieb:

    borg schrieb:

    volkard schrieb:

    also 250000 mit JJ und 250000 mit MM und 500000 mit MJ.

    hier liegt dein fehler, du hast 250000 JJ, 250000 MM, 250000 MJ und 250000 JM.
    wenn du jetzt weisst, das erste kind ist ein junge, dann bleiben über: JJ und JM. MJ fällt weg, bei MJ ist das erste kind ein mädchen.
    => die chance ist 50/50

    Nein, Du hast nicht das erste gesehen, sondern eines davon.

    du kennst die belegung der ersten variable [J] somit fallen alle Belegungen weg mit [M][X].



  • Optimizer schrieb:

    int choice = rand.Next() % 2;
    
    // Es muss ja ein Junge am Fenster stehen
    if( childs[choice] == 1 )
      continue;
    

    Dein Fehler ist, daß Du ziehst, welches Kind Du siehst. Es steht aber in der Aufgabenstellung: Du siehst einen Jungen. Nicht Du siehst beide Kinder mit gleicher Wahrscheinlichkeit.

    Der richtige Test lautet also: if(chides[0]==1 && childs[1]==1) continue;
    Im anderen Fall siehst Du den Jungen, weil es so in der Aufgabenstellung steht.

    Alternativ könntest Du auch Würfeln welches Kind Du siehst und dessen Wert auf "Junge" setzen. Denn Du siehst sicher einen Jungen, nicht nur manchmal. (Aufgabenstellung)



  • Optimizer schrieb:

    Jester schrieb:

    Wo bitte steht bei Dir P(B)? Man sieht einen Jungen. Fertig. P(B)=1, das sichere Ereignis.

    P(B) = 0 + 1/4 + 1/8 + 1/8 (für MM, JJ, JM, MJ)
    Es geht nicht darum, ob jetzt der Junge am Fenster steht. Das wäre natürlich eins. Es geht darum ob er am Fenster stehen würde, bei bestimmten Kombinationen.

    Nein. Lies die Aufgabenstellung.



  • b7f7 schrieb:

    du kennst die belegung der ersten variable [J] somit fallen alle Belegungen weg mit [M][X].

    Herrgott nein. Du kennst die Belegung einer Variablen, nicht die von der ersten.


Anmelden zum Antworten