Mathe-Verständnis trainieren


  • Mod

    otze schrieb:

    Was ist daran nicht mathematisch?

    Umgekehrt: Der Sudokuspieler löst so nicht das Sudoku. Sudoku ist eher ein Suchspiel mit einem gewissen Grad an Ausprobieren. Nix vonwegen Strategien, Beweisen oder Sätzen.



  • Ich finde Mathe = Sudoku auch sehr weit hergeholt. Zum einen weil der Abstraktionsgrad sehr gering ist, da es sich leicht visualisieren laesst, zum anderen ist es ueberschaubar, 9x9x9 Ziffern mit 4 bis 5 Regeln. Ich glaube auch nicht, dass Loesen von Sudoku zu besserem Matheverstaendnis fuehrt.



  • Hehe, das Lösen von Soduko wird dann zu Mathe, wenn man nicht ein Soduko löst sondern alle!



  • knivil schrieb:

    Ich finde Mathe = Sudoku auch sehr weit hergeholt.

    Das ist auch eine unzulässige Einschränkung die du da machst. Ich habe explizit von einer Sammlung an Logikrätseln gesprochen. Dazu gehören unter anderem die Sudoku Varianten:
    http://de.wikipedia.org/wiki/Sudoku#Killer-Sudoku
    Und betrachten Abschnitt über analytische Methoden
    http://de.wikipedia.org/wiki/Sudoku#Analytisch-systematische_Basismethoden

    Aber natürlich meine ich nicht nur Sodukus, sondern auch
    http://de.wikipedia.org/wiki/Kuromasu
    http://de.wikipedia.org/wiki/Nurikabe

    und ähnliches. Denn dann löst man unterschiedliche Probleme mit unterschiedlcheer Abstraktion, Regeln und Lösungsstrategie.

    zum anderen ist es ueberschaubar, 9x9x9 Ziffern mit 4 bis 5 Regeln

    Zum EInen ist Mathematik in der Uni auch lange Zeit nicht wesentlich schwieriger, zum anderen geht es darum logisches denken zu lernen und das lernt man nicht an einem Problem mit 2^20 Variablen und 300 Nebenbedingungen. Genausogut könntest du sagen, dass der Beweis des Mittelwertsatzes keine Mathematik ist, weil das Problem überschaubar ist.



  • Und tic tac toe nicht vergessen. Ab ner elo von 2000 ist das mathestudium ein klacks!



  • Jester schrieb:

    Und tic tac toe nicht vergessen. Ab ner elo von 2000 ist das mathestudium ein klacks!

    http://de.wikipedia.org/wiki/Strohmann
    http://de.wikipedia.org/wiki/Stil



  • Tut mir leid, aber zu mehr konnte ich mich nicht durchringen. Das ganze ist einfach zu absurd.



  • Jester schrieb:

    Tut mir leid, aber zu mehr konnte ich mich nicht durchringen. Das ganze ist einfach zu absurd.

    Dann müsste es ja ein simples Argument geben. Mein Prof sagt mir immer: wenn du es verstanden hast, dann schreibs doch für mich auf.

    Aber viellicht eine Meta-Erklärung.

    Die Frage ist: "wie bereite ich mich am Besten auf das Mathestudium vor?" Und die von mir abweichenden Antworten sind im großen und ganzen in der Kategorie: "Lern einfach schonmal, was im Mathestudium dran kommen wird". Nun behaupte ich, dass wenn er sich ohne Hilfe etwas aus einem Mathebuch beibringen kann, er absolut keine Vorübung braucht.

    Also sage ich: lerne, logisch zu denken, und logische Rtsel führen sehr schnell zu ähnlichen Denkmustern.

    Worauf Jester rumtrollt. Ich sehe das mal als kleinen Sieg meinerseits.



  • otze schrieb:

    die von mir abweichenden Antworten sind im großen und ganzen in der Kategorie: "Lern einfach schonmal, was im Mathestudium dran kommen wird". Nun behaupte ich, dass wenn er sich ohne Hilfe etwas aus einem Mathebuch beibringen kann, er absolut keine Vorübung braucht.

    👍 👍 👍


  • Mod

    otze schrieb:

    Jester schrieb:

    Tut mir leid, aber zu mehr konnte ich mich nicht durchringen. Das ganze ist einfach zu absurd.

    Dann müsste es ja ein simples Argument geben.

    Die Behauptung, dass man aus Logikrätseln in Mathe besser wird ist deswegen absurd, weil du hier die mathematische Analyse dieser Rätsel mit dem Lösungsweg verwechselst. Die Analyse der Rätsel ist anspruchsvolle Mathematik. Das Lösen der Rätsel ist das Antrainieren der typischen Muster und Suchen derselben im Rätsel. Minesweeper auf etwas höherem Niveau (bei Sudoku nicht einmal höher, würde ich sagen).



  • otze schrieb:

    Die Frage ist: "wie bereite ich mich am Besten auf das Mathestudium vor?" Und die von mir abweichenden Antworten sind im großen und ganzen in der Kategorie: "Lern einfach schonmal, was im Mathestudium dran kommen wird". Nun behaupte ich, dass wenn er sich ohne Hilfe etwas aus einem Mathebuch beibringen kann, er absolut keine Vorübung braucht.

    @otze: Vielleicht bist Du ja ein Naturtalent, das alles auf Anhieb versteht, aber für viele Studienanfänger sind die Mathematikvorlesungen ein ganz enormer Hammer. Oft ist es für die Leute eine Hürde, an der sie scheitern. Wenn man sich im Vorfeld aber schon mit der Materie auseinandersetzt, dann hat man schon ein grundsätzliches Gedankengerüst, in das man alles neue einbauen kann. Die meisten Leute erhalten bei der ersten Lektüre bestimmter Fachliteratur kein allumfassendes Wissen. Insofern wird die Beschäftigung mit dem Stoff im Vorfeld des Studiums das Studium natürlich nicht ersetzen. Aber es wird das Studium erleichtern, weil man vieles eben schonmal gesehen hat.

    Jetzt ist hier einer, der ganz explizit und frühzeitig fragt, was er machen kann, damit er nicht an den Mathevorlesungen scheitert. Aus meiner Sicht kann man da eine Menge machen. Jetzt hat er noch jede Menge Zeit. Im Studium muss er Dinge viel schneller verstehen. Wenn er da zu lange braucht, dann hat er ein Problem.



  • Viele der Argumente wurden ja inzwischen genannt, aber ich mach Dir gerne nochmal ne Liste. Allein, das gründlich ausformulieren werde ich nicht, da stimmt imo die Kosten-Nutzenrechnung nicht.

    - mehr Mustererkennung als Anwendung von logischen Schlussregeln
    - zu eingeschränkte Möglichkeiten überhaupt irgendwas interessantes zu argumentieren, letztlich passt alles in eine hand voll Schablonen "wenn hier die Zahl steht, dann kann sie nicht hier stehen etc.", weil Sudoku einfach nicht mehr hergibt.
    - ungeeignete strukturelle Eigenschaften: konkrete, sehr endliche Struktur bei der sogar rumprobieren zum Ziel führt. eigentlich will man aber abstrakte, nur durch Axiome definierte Strukturen behandeln können. (allein die Tatsache, dass man sudokus simpel per backtracking lösen kann zeigt doch, dass einfach riesige Anteile fehlen)
    - mangelnder abstraktionsgrad: es gibt keine Definitionen/Aussagen auf die zum Formulieren und Erklären komplexer Zusammenhänge zurückgegriffen wird

    Ich bin mir sicher, dass wir noch viel mehr finden können, aber ich denke dass eigentlich jeder dieser Punkte allein zeigt warum Sudoku einfach keine Vorbereitung auf Mathematik im Studium ist.

    Ich einem Punkt möchte ich Dir allerdings ausdrücklich recht geben. Ich denke auch nicht, dass jemand, dem es gelingt sich den Stoff aus den Büchern zu erarbeiten eigentlich keine Vorbereitung braucht. Ich glaube, dass Mathematik gerade in den Grundlagen durchaus davon lebt, dass man das von einem (guten) Dozenten vernünftig erklärt kriegt. Wenn man einen gewissen Grundstock an Wissen hat, dann kann man auch gut mit Büchern, aber davor ist das reichlich mühsam und ich habe meine Zweifel dass das gut investierte Zeit ist.

    So und jetzt nochmal zurück dazu.

    otze schrieb:

    Worauf Jester rumtrollt. Ich sehe das mal als kleinen Sieg meinerseits.

    Merkst Du eigentlich was Du hier grad anrichtest? Hier fragt jemand wie er sich auf den Matheanteil im Studium vorbereiten kann. Und du empfiehlst ihm seine Zeit damit zu verschwenden Sudokus zu lösen? Bist Du noch ganz bei Trost? Stell Dir vor der macht das jetzt wirklich und zwingt sich zu ganz viel Sudokus weil es ja so ne super Vorbereitung auf Mathematik im Studium ist. Klingt das für Dich nach ner guten Idee? Kannst Du das verantworten? Denkst Du allen ernstes damit kann er dann richtig durchstarten? (Was Dein Prof wohl dazu sagen würde?).

    Aber ist okay, Du hast gewonnen. Am besten Du trägst den Sieg schnell davon. 👍



  • Mechanics schrieb:

    Das hat nichts mit Formeln zu tun, schon gar nicht an der Uni, du musst eher abstrakt denken können.

    ScottZhang schrieb:

    Mathe muss man nicht trainieren, das kann jeder. Denn Mathe ist denken.

    otze schrieb:

    Also sage ich: lerne, logisch zu denken, und logische Rtsel führen sehr schnell zu ähnlichen Denkmustern.

    Könnt Ihr mal etwas genauer erläutern, was Ihr unter "denken", "abstrakt denken" und "logisch denken" versteht? ...vielleicht auch noch "analytisch denken", weil man das auch andauernd hört. Habt Ihr mal einen Menschen getroffen, der von sich selbst gesagt hat, dass er nicht so denken kann? Andererseits wundert man sich ja häufig, was andere Leute so alles "logisch" und ähnlich finden. Zumindest denke ich, dass das völlig schwammige Begriffe sind, die dem Threadersteller vermutlich nicht besonders viel weiterhelfen werden. Da kann man ja absolut alles oder auch gar nichts reininterpretieren.





  • Jester schrieb:

    Ich glaube, dass Mathematik gerade in den Grundlagen durchaus davon lebt, dass man das von einem (guten) Dozenten vernünftig erklärt kriegt. Wenn man einen gewissen Grundstock an Wissen hat, dann kann man auch gut mit Büchern, aber davor ist das reichlich mühsam und ich habe meine Zweifel dass das gut investierte Zeit ist.

    Hmmm.

    Es ist natürlich jeder Mensch anders und ebenso sind die Lernmethoden, mit denen man effizient und effektiv lernen kann, für jeden Menschen andere. Ich habe damals im Studium relativ viel aus Büchern gelernt und habe relativ wenig aus Vorlesungen mitgenommen. Deswegen habe ich nie ein großes Problem darin gesehen, Leuten zu sagen, sie sollen doch einfach mal in einem entsprechenden Fachbuch lesen, wenn sie sich etwas bestimmtes aneignen möchten. Aber vielleicht ist das in der Tat nicht für jeden die beste Option. Letztendlich muss da wohl jeder selbst ausprobieren, wie er sich bestimmte Dinge am Besten aneignen kann. Aber: Das sollte vor dem Studium geschehen. Ich erinnere mich, dass es damals, als ich mit dem Studium angefangen habe, Leute gab, die Bücher mit Titeln wie "Lernen lernen" gelesen haben. Ich glaube nicht, dass die das Studium durchgezogen haben.

    Aber was genau kann einem ein Dozent geben, was einem ein Buch nicht gibt? Einen wesentlichen Unterschied in den Aussagen, die man in einer Vorlesung hört und die in einem Buch stehen, habe ich damals nicht feststellen können. Für mich war allerdings ein ganz erheblicher Unterschied, dass Vorlesungen entweder zu langsam oder zu schnell waren, Bücher hingegen immer genau mein Tempo hatten. Da kann man nämlich einfach anhalten und einen Absatz nochmal lesen, wenn man etwas nicht verstanden hat. Wären Videovorlesungen, wie man sie im Internet findet, aus Deiner Sicht näher an einer Vorlesung dran und somit besser zur Vorbereitung geeignet als ein Buch? ...also "für die Leute besser, die eben aus Vorlesungen mehr mitnehmen". Oder sind es mehr die Übungsgruppen, um die es Dir geht? Das wäre etwas, was ich besser nachvollziehen könnte.

    Was wäre denn Deine Empfehlung an den Threadersteller?



  • @Jester Dann überleg dir mal, wie Mathe so in den ersten 2 Semestern aussieht (wenn ein Informatiker überhaupt mehr hat): muster erkennen und regeln anwenden. Das ist wirklich nicht mehr und garantiert nicht schwieriger als Sudoku. Natürlich muss man neue Muster lernen und nuen Regeln anwenden. Durch Analysis kommste damit aber durch den Kurs. Dieses erkennen der Muster und das Gefühl, ob ein Muster zum Ziel führt, muss man aber lernen. Und das kann man auch trainieren, indem man nicht Mathe macht, sondern Logikrätsel angeht, da jed Kategorie von Logikrätseln irgendwas neues darstellt. Sicher, nach dem 10. Dusoku wird Sudoku nicht mehr viele aha-momente auslösen, da hat man die wichtigsten Strategien. Dann wächselt man auf ein anderes Rätsel.

    Mustererkennung ist meiner Meinung nach die wichtigste Fähigkeit um Mathe zu machen. Und die fehlt halt den meisten Studenten komplett. Die sehen ja nichtmal, das sie mal kürzen können. Oder merken gar nicht, dass sie mal geduldig mehrere Ansätze ausprobieren müssen. Ich kenn die Situation als Student und Übungsleiter, weiß also genau wie so der Durchschnitt der Informatiker bei uns tickt.


  • Mod

    otze schrieb:

    @Jester Dann überleg dir mal, wie Mathe so in den ersten 2 Semestern aussieht (wenn ein Informatiker überhaupt mehr hat): muster erkennen und regeln anwenden.

    Ist das dein Ernst? Da kannst du auch sagen, dass du durch Autofahren (ist hauptsächlich Regeln anwenden und Muster erkennen) zum besseren Mathematiker wirst, wenn für dich da kein Unterschied in der Qualität dieser Begriffe im Kontext von Hochschulmathematik und Logikrätseln besteht. Ich würde sogar anzweifeln, dass die allgemeine Fähigkeit, Regeln anzuwenden und Muster zu erkennen in einem Bereich irgendwie übertragbar ist auf andere Regeln und andere Muster.



  • otze schrieb:

    Und das kann man auch trainieren, indem man nicht Mathe macht, sondern Logikrätsel angeht, da jed Kategorie von Logikrätseln irgendwas neues darstellt. Sicher, nach dem 10. Dusoku wird Sudoku nicht mehr viele aha-momente auslösen, da hat man die wichtigsten Strategien. Dann wächselt man auf ein anderes Rätsel.

    BTW: Es wundert mich, dass Du Sudoku andauernd als "Logikrätsel" bezeichnest. Was hat denn Sudoku mit Logik zu tun? Ich sehe da ungefähr gar keinen Zusammenhang. Aus Sicht der Informatik würde ich Sudoku als Constraint Satisfaction Problem ansehen. Und in dem Zusammenhang könnte es durchaus interessant sein, sich mal ein bisschen damit zu beschäftigen. Zumindest kann man an Sudokus ein paar grundsätzliche Strategien ausprobieren, mit denen man an Constraint Satisfaction Probleme herangeht.



  • Wikipedia schrieb:

    „Zahlen trage ich nur mit Bleistift ein, um sie notfalls wieder wegradieren zu können. Eine unsichere Zahl markiere ich mit einem Sternchen, alle nachfolgenden dann mit einem Punkt. Taucht später ein Fehler auf, kann ich alle markierten Zahlen wegradieren und an der Sternchen-Stelle neu ansetzen“, empfiehlt Kerstin Wöge aus Spandau, die erste Sudoku-Meisterin, in der BZ vom 29. November 2005.



  • Euklid schrieb:

    Es gibt keinen Königsweg zur Mathematik.


Anmelden zum Antworten