[Rätsel] Die blauäugigen Insulaner
-
Es dürfte sich eigentlich nichts ändern, schließlich ist die Information für keinen Insulaner neu.
Jeder blauäugige Insulaner weiß, dass es entweder 99 oder 100 blauäugige Insulaner gibt und jeder braunäugige weiß, dass es entweder 100 oder 101 gibt.
-
Der Reisende hat alle Insulaner gesehen und alle Insulaner haben seine Bemerkung mitbekommen?
-
Ich glaube ich habe was:
P.S.: Hilft doch immer bei solchen Rätseln, die Extremfälle zu betrachten, dann fällt die Lösung oft leichter. Athars Bemerkung war auch hilfreich, auch wenn meine Interpretation genau gegenteilig ist
.
P.P.S.: Ich werde das mal spoilern, da ich mir recht sicher bin, dass dies des Rätsels Lösung ist.
-
ändert sich nix, da er ja keinem die augenfarbe sagt oder
-
Gregor schrieb:
Kein Insulaner weiß, dass es nur 2 verschiedene Augenfarben auf der Insel gibt.
Dann kann doch jeder Insulaner denken, dass er genauso gut rote Augen haben könnte.
-
Jan schrieb:
Gregor schrieb:
Kein Insulaner weiß, dass es nur 2 verschiedene Augenfarben auf der Insel gibt.
Dann kann doch jeder Insulaner denken, dass er genauso gut rote Augen haben könnte.
die leben aber nicht im dorf der albinos
-
Angenommen, es gäbe zwei mit blauen Augen. Dann wüssten beide von ihnen, dass es noch einen anderen mit blauen Augen gibt und würden erwarten, dass dieser eine sich umbringen müsste.
Erklär das mal genauer. Woher wüssten die, dass es noch einen geben muss?? Es wurde nie eine Zahl vom Besucher erwähnt.
-
Jan schrieb:
Gregor schrieb:
Kein Insulaner weiß, dass es nur 2 verschiedene Augenfarben auf der Insel gibt.
Dann kann doch jeder Insulaner denken, dass er genauso gut rote Augen haben könnte.
Nein, wenn die Aussage des Besuchers wahr ist, dann kann es nicht jeder denken! Und dann greift eine Induktionsregel ...
-
Daniel@work schrieb:
Jan schrieb:
Gregor schrieb:
Kein Insulaner weiß, dass es nur 2 verschiedene Augenfarben auf der Insel gibt.
Dann kann doch jeder Insulaner denken, dass er genauso gut rote Augen haben könnte.
Und dann greift eine Induktionsregel ...
ach! du meinst so wie bei SeppJ
L
O
L
-
Gregor, bist auch auf Matroid Matheplaneten unterwegs?
Da gibt's gerade das wort-wörtlich gleiche Rätsel und wurde da auch gelöst.
-
Jockelx schrieb:
Gregor, bist auch auf Matroid Matheplaneten unterwegs?
Da gibt's gerade das wort-wörtlich gleiche Rätsel und wurde da auch gelöst.wärst so nett und rückst nen link raus
-
-
SeppJ schrieb:
P.S.: Hilft doch immer bei solchen Rätseln, die Extremfälle zu betrachten, dann fällt die Lösung oft leichter. Athars Bemerkung war auch hilfreich, auch wenn meine Interpretation genau gegenteilig ist
.
Und wo ist jetzt ein Fehler, in Athars Argumentation oder in deiner?
-
Das mit dem gemeinsamen Wissen ist gut, das kann ich akzeptieren.
-
FierFachF schrieb:
SeppJ schrieb:
P.S.: Hilft doch immer bei solchen Rätseln, die Extremfälle zu betrachten, dann fällt die Lösung oft leichter. Athars Bemerkung war auch hilfreich, auch wenn meine Interpretation genau gegenteilig ist
.
Und wo ist jetzt ein Fehler, in Athars Argumentation oder in deiner?
Gute Frage, ich möchte ja mal Gregor abwarten, was er sich für eine Lösung denkt. Und ob dies zu meiner Lösung passt.
Aber so sehe ich das:
Athar sagte, es macht keinen Unterschied, da die Blauäugigen schon vorher wussten, dass es 99 oder 100 Blauäugige gibt und die Braunäugigen wussten schon vorher, dass es 100 oder 101 Blauäugige gibt. Und die Information, dass es mindestens 1 gibt, wäre daher nichts neues. Das ist auch richtig. Es ist aber der Unterschied zwischen dem Wissen der Blauäugigen und Braunäugigen den Athar hier nebenbei erwähnt hat, der mich auf die Lösung gebracht hat.
Die neue Information die der Reisende demnach gegeben hat ist, dass es 100 Tage nach seiner Abreise mindestens 100 Blauäugige geben muss, wodurch der Unterschied im Wissen der Blauäugigen und Braunäugigen auf einmal relevant wird.
-
Das meiste kann ich zum großteil verstehen. Aber irgendwie ist bei mir untergegangen warum es nicht mehr Augenfarben geben kann. Keiner kann doch ausschließen das er Grüne Augen hat oder? Kurzum nach 100 Tagen würden sich alle Blauäugigen umbringen. Alle anderen hätten keine weiteren Informationen. Bis irgendwann die Information darüber auftaucht das irgend jemand braune Augen hat.
Es könnten ja auch alle anderen komplett unterschiedliche Augenfarben habe. Nur man selbst habe die jeweilige Augenfarbe.
-
Fedaykin schrieb:
Das meiste kann ich zum großteil verstehen. Aber irgendwie ist bei mir untergegangen warum es nicht mehr Augenfarben geben kann. Keiner kann doch ausschließen das er Grüne Augen hat oder? Kurzum nach 100 Tagen würden sich alle Blauäugigen umbringen. Alle anderen hätten keine weiteren Informationen. Bis irgendwann die Information darüber auftaucht das irgend jemand braune Augen hat.
Es könnten ja auch alle anderen komplett unterschiedliche Augenfarben habe. Nur man selbst habe die jeweilige Augenfarbe.Sagt doch auch niemand, dass es nicht mehr Augenfarben geben kann. Die Braunäugigen müssten demnach alle am Leben bleiben, weil sie nicht ausschließen können selber eine andere Augenfarbe zu haben.
-
Naja in den Posts zu dem Link der hier aufgetaucht ist. War die Aussage das nach 101 Tagen alle Braunäugigen umbringen. Ich glaube das wurde dann aber revidiert. Bin mir da aber nicht so sicher.
-
xkcd hat das ganze auch:
http://www.xkcd.com/blue_eyes.html
(achtung, lösung):
http://xkcd.com/solution.htmlich bin ehrlich gesagt nicht drauf gekommen.
-
SeppJ schrieb:
Angenommen, es gäbe einen Insulaner mit blauen Augen, dann wüsste er sofort, dass er es ist und müsste sich umbringen.
Angenommen, es gäbe zwei mit blauen Augen. Dann wüssten beide von ihnen, dass es noch einen anderen mit blauen Augen gibt und würden erwarten, dass dieser eine sich umbringen müsste. Da er es nicht tut, müssen sie folgern, dass sie selbst auch blaue Augen haben, da es zwei Blauäugige gibt und sie nur einen sehen können. Die Braunäugigen können zwei Blauäugige sehen und können daher nicht diesen Schluss ziehen.
Und so weiter mit 3.
Sicher, dass das nach dem gleichen Muster weitergeht? Bei 3 Leuten sieht ja der erste, dass es mindestens zwei Blauäugige gibt. Der dritte setzt aber für die Hypothese mit zwei blauäugigen Insulanern voraus, dass der erste sich umbrächte, wenn er merkte, dass er der einzige ist. Dafür müsste der erste aber davon ausgehen, dass es nur einen Blauäugigen gibt und das ist bei 3 Leuten nicht mehr der Fall.