Abstand punkt zu gerade bestimmen.



  • Hallo,

    ich habe bei folgende Aufgabe ein kleines Problem und zwar weiss ich nicht mehr woher das (2|1) kommt. Ich denke mal, dass es das Steigungsdreieck vom punkt F zum punkt P ist. Aber ich komm einfach nicht drauf wie ich es berechne.

    http://fs1.directupload.net/images/150113/temp/i7nsvb26.jpg

    danke


  • Mod

    edit: Nun passen hoffentlich alle Minuszeichen:

    Das kommt durch "Ablesen" aus der Geradengleichung als ein senkrechter Vektor zum Verlauf der Geraden. Wenn wir die Geradengleichung
    3=2x+y3 = 2x + y
    nehmen und in Vektorform umschreiben, bekommen wir beispielsweise:
    g(λ)=(03)+λ(12)\vec{g}(\lambda) = \left(\begin{array}{c}0\\3\end{array}\right) + \lambda \left(\begin{array}{c}1\\-2\end{array}\right)
    Und ein senkrechter Vektor zum Richtungsvektor (12)\left(\begin{array}{c}1\\-2\end{array}\right) ist beispielsweise (21)\left(\begin{array}{c}2\\1\end{array}\right). Was man prinzipiell auch einfach direkt aus dem 2\*x + 1\*y Teil der Geradengleichung ablesen könnte, indem man einfach die Koeffizienten umdreht.



  • danke 👍


Anmelden zum Antworten