Frage zu MD5



  • Hi,

    ich poste das einfach mal unter Mathematik, denn ein Hashalgorithmus ist ja im Prinzip reine Mathematik.

    Es heißt ja immer, dass man MD5 nicht umkehren kann, d.h. ich kann (außer mit Brute Force) keinen Datenblock errechnen, der einen bestimmten Hashwert beim Hashen ergibt. Darauf basieren ja nicht nur sehr viele Passwortspeicherverfahren, sondern auch die meisten Tauschbörsen, um Dateien eindeutig zu identifizieren.

    Jetzt die Frage, MD5 ist ja ein festgelegter Algorithmus. Warum kann ich nicht den fertigen Hash nehmen und dann quasi rückwärts gehen, d.h. für jeden Schritt per (schnellem) Brute Force den vorherigen ausrechnen. Wenn ich beim Brute Forcen einfach immer die erste Lösung nehme, müsste ich doch am Ende schnell auf eine gültige Lösung kommen, oder?

    ChrisM



  • Naja, MD5 ist ja eine Checksum und hat eine bestimmte Anzahl an Bits. Wenn du jetzt versuchst die 700MB AVI-Datei von der die Checksumme stammt mithilfe dieser wieder zu rekonstruieren und das schaffst, dann verdienste dir bestimmte ne goldene Nase für einen super Kompressionsalgo 😃

    Es geht einfach nicht, dass du aus so wenig Information so viel wiederherstellst (in den meisten Fällen jedenfalls).

    cya
    liquid



  • Ich glaube nicht, dass ChrisM das so gemeint hat. Es geht darum, ob es möglich ist, aus dem Hash irgendeinen gültigen Ausangswert zu berechnen. Durchaus möglich, dass man aus der Checksum einer 700MB-Datei einen Fünf-Zeichen-String errechnen kann. Es geht lediglich darum, ob sie denselben Hash haben.

    Die Idee, eine MD5-Umkehrung zu implementieren ist interessant. Ich kann hier nur raten, aber ich vermute, dass es nicht möglich ist. Sonst hätte man das bestimmt bereits getan...



  • Vielleicht nur als kleinen Denkanstoß:

    In diesem Satz kommt die 0 _ mal vor, die 1 _ mal, die 2 _ mal, die 3 _ mal, die 4 _ mal, die 5 _ mal, die 6 _ mal, die 7 _ mal, die 8 _ mal, die 9 _ mal.

    Bitte ausfüllen... Warum ist das so schwierig?
    Weil jedes Teil der Lösung wieder das komplette Ergebnis beeinflußt. Man weiß sozusagen nicht so recht, wo man anfangen soll.

    MfG Jester



  • Es ist übrigens auch nicht korrekt das gesagt wird MD5 lasse sich nicht umkehren. Korrekt ist: Es ist kein Weg bekannt die MD5 funktion umzukehren der gegenüber eines Brute Force Angriffs erheblich Rechenzeit spart. Man kann auch an älteren Hashverfahren sehen, dass manchmal doch solche Wege gefunden werden.



  • Hi,

    @LiquidAcid: Ne, so blöd bin ich dann auch wieder nicht, ich meine genau das, was Dasd gesagt hat, also das ich gezielt eine Zeichenfolge suche, die einen bestimmten Hashwert erzeugt.

    @Jester: Ja, aber in dem ich versuche ein Ergebnis zu errechnen, muss ich doch den Hash gar nicht verändern. Die Bedingungen bleiben also die gleichen.

    Eine Einwegfunktion Binärdaten -> Hashwert zu schreiben, ist ja wirklich einfach (wenn man den Algorithmus verstanden hat), aber eine entsprechende Umkehrfunktion zu schreiben, verdammt schwer, wenn nicht unmöglich.
    Wenn es nämlich ginge, könnte man MD5 ja nicht mehr zur Identifikation verwenden. User in Tauschbörsen könnten dann z.B: defekte Teile schicken und der Empfänger würde sie als richtig erkennen, weil der Hashwert ja stimmt. Also kann es nicht gehen, sonst würde es die Musikindustrie ja wohl so machen. 😉

    Korrekt ist: Es ist kein Weg bekannt die MD5 funktion umzukehren der gegenüber eines Brute Force Angriffs erheblich Rechenzeit spart.

    Danke 🙂

    ChrisM



  • ChrisM schrieb:

    Ja, aber in dem ich versuche ein Ergebnis zu errechnen, muss ich doch den Hash gar nicht verändern.

    Den nicht, aber den bisherigen Lösungsraum. Jede neue Zahl die Du einträgst verändert vielleicht wieder alte Werte. Und wenn Dir beim MD5 regelmäßig die gefundenen Teilergebnisse wieder kaputt gehen, dann ist das nicht so schön. Genau deswegen funktioniert ja (bis jetzt) nur ein Brute Force Angriff.



  • über genau das thema hab ich mir auch schon gedanken gemacht. und ich bin klar dafür, das das geht. es gibt keine rechenoperation die ncith umkehrbar ist. (auch wenn dabei mehrer lösungen möglich sind)

    User in Tauschbörsen könnten dann z.B: defekte Teile schicken und der Empfänger würde sie als richtig erkennen, weil der Hashwert ja stimmt. Also kann es nicht gehen, sonst würde es die Musikindustrie ja wohl so machen.

    GENAU DAS MACHT DIE MUSIKINDUSTRIE !!! 😉

    In diesem Satz kommt
    die 0 6 mal vor,
    die 1 2 mal,
    die 2 1 mal,
    die 3 0 mal,
    die 4 0 mal,
    die 5 0 mal,
    die 6 1 mal,
    die 7 0 mal,
    die 8 0 mal,
    die 9 0 mal.

    mfg 😃 😃 😃

    um ne genaue antwort zu geben bräuchte man wohl mal den algorithmus an sich.

    lw



  • Lawilog schrieb:

    In diesem Satz kommt
    die 0 6 mal vor,
    die 1 2 mal,
    die 2 1 mal,
    die 3 0 mal,
    die 4 0 mal,
    die 5 0 mal,
    die 6 1 mal,
    die 7 0 mal,
    die 8 0 mal,
    die 9 0 mal.

    Lügner!



  • HALLO ????!!!

    einer von uns beiden kann nicht zählen.

    lw



  • Ich sehe mindestens einmal die 9 😉



  • versucht mal in einer textdatei den "eigenen" md5 wert zu speichern...



  • na gut... 😃

    In diesem Satz kommt
    die 0 2 mal vor,
    die 1 10 mal,
    die 2 1 mal,
    die 3 1 mal,
    die 4 1 mal,
    die 5 1 mal,
    die 6 1 mal,
    die 7 1 mal,
    die 8 1 mal,
    die 9 1 mal.

    versucht mal in einer textdatei den "eigenen" md5 wert zu speichern...

    den check ich net.

    also hat mal jemand den md5-alogithmus zur hand ?
    vielleicht stellt sich ja dann heraus, das ich (++ChrisM) unrecht hab. aber dazu will ich mir das erstmal angucken.

    lw



  • ok, ich muss das erstmal verstehn, aber ich hab die beschreibung des algorithmuses gefunden:
    RFC 1321, "The MD5 Message-Digest Algorithm ", April 1992
    ich hab das schon nach errata korregiert:

    (sorry, das das n bischen länger ist...)

    Network Working Group                                          R. Rivest
    Request for Comments: 1321           MIT Laboratory for Computer Science
                                                 and RSA Data Security, Inc.
                                                                  April 1992
    
                         The MD5 Message-Digest Algorithm
    
    Status of this Memo
    
       This memo provides information for the Internet community.  It does
       not specify an Internet standard.  Distribution of this memo is
       unlimited.
    
    Acknowlegements
    
       We would like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle,
       David Chaum, and Noam Nisan for numerous helpful comments and
       suggestions.
    
    Table of Contents
    
       1. Executive Summary                                                1
       2. Terminology and Notation                                         2
       3. MD5 Algorithm Description                                        3
       4. Summary                                                          6
       5. Differences Between MD4 and MD5                                  6
       References                                                          7
       APPENDIX A - Reference Implementation                               7
       Security Considerations                                            21
       Author's Address                                                   21
    
    1. Executive Summary
    
       This document describes the MD5 message-digest algorithm. The
       algorithm takes as input a message of arbitrary length and produces
       as output a 128-bit "fingerprint" or "message digest" of the input.
       It is conjectured that it is computationally infeasible to produce
       two messages having the same message digest, or to produce any
       message having a given prespecified target message digest. The MD5
       algorithm is intended for digital signature applications, where a
       large file must be "compressed" in a secure manner before being
       encrypted with a private (secret) key under a public-key cryptosystem
       such as RSA.
    
    Rivest                                                          [Page 1]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
       The MD5 algorithm is designed to be quite fast on 32-bit machines. In
       addition, the MD5 algorithm does not require any large substitution
       tables; the algorithm can be coded quite compactly.
    
       The MD5 algorithm is an extension of the MD4 message-digest algorithm
       1,2]. MD5 is slightly slower than MD4, but is more "conservative" in
       design. MD5 was designed because it was felt that MD4 was perhaps
       being adopted for use more quickly than justified by the existing
       critical review; because MD4 was designed to be exceptionally fast,
       it is "at the edge" in terms of risking successful cryptanalytic
       attack. MD5 backs off a bit, giving up a little in speed for a much
       greater likelihood of ultimate security. It incorporates some
       suggestions made by various reviewers, and contains additional
       optimizations. The MD5 algorithm is being placed in the public domain
       for review and possible adoption as a standard.
    
       For OSI-based applications, MD5's object identifier is
    
       md5 OBJECT IDENTIFIER ::=
         iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 5}
    
       In the X.509 type AlgorithmIdentifier [3], the parameters for MD5
       should have type NULL.
    
    2. Terminology and Notation
    
       In this document a "word" is a 32-bit quantity and a "byte" is an
       eight-bit quantity. A sequence of bits can be interpreted in a
       natural manner as a sequence of bytes, where each consecutive group
       of eight bits is interpreted as a byte with the high-order (most
       significant) bit of each byte listed first. Similarly, a sequence of
       bytes can be interpreted as a sequence of 32-bit words, where each
       consecutive group of four bytes is interpreted as a word with the
       low-order (least significant) byte given first.
    
       Let x_i denote "x sub i". If the subscript is an expression, we
       surround it in braces, as in x_{i+1}. Similarly, we use ^ for
       superscripts (exponentiation), so that x^i denotes x to the i-th
       power.
    
       Let the symbol "+" denote addition of words (i.e., modulo-2^32
       addition). Let X <<< s denote the 32-bit value obtained by circularly
       shifting (rotating) X left by s bit positions. Let not(X) denote the
       bit-wise complement of X, and let X v Y denote the bit-wise OR of X
       and Y. Let X xor Y denote the bit-wise XOR of X and Y, and let XY
       denote the bit-wise AND of X and Y.
    
    Rivest                                                          [Page 2]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
    3. MD5 Algorithm Description
    
       We begin by supposing that we have a b-bit message as input, and that
       we wish to find its message digest. Here b is an arbitrary
       nonnegative integer; b may be zero, it need not be a multiple of
       eight, and it may be arbitrarily large. We imagine the bits of the
       message written down as follows:
    
              m_0 m_1 ... m_{b-1}
    
       The following five steps are performed to compute the message digest
       of the message.
    
    3.1 Step 1. Append Padding Bits
    
       The message is "padded" (extended) so that its length (in bits) is
       congruent to 448, modulo 512. That is, the message is extended so
       that it is just 64 bits shy of being a multiple of 512 bits long.
       Padding is always performed, even if the length of the message is
       already congruent to 448, modulo 512.
    
       Padding is performed as follows: a single "1" bit is appended to the
       message, and then "0" bits are appended so that the length in bits of
       the padded message becomes congruent to 448, modulo 512. In all, at
       least one bit and at most 512 bits are appended.
    
    3.2 Step 2. Append Length
    
       A 64-bit representation of b (the length of the message before the
       padding bits were added) is appended to the result of the previous
       step. In the unlikely event that b is greater than 2^64, then only
       the low-order 64 bits of b are used. (These bits are appended as two
       32-bit words and appended low-order word first in accordance with the
       previous conventions.)
    
       At this point the resulting message (after padding with bits and with
       b) has a length that is an exact multiple of 512 bits. Equivalently,
       this message has a length that is an exact multiple of 16 (32-bit)
       words. Let M[0 ... N-1] denote the words of the resulting message,
       where N is a multiple of 16.
    
    3.3 Step 3. Initialize MD Buffer
    
       A four-word buffer (A,B,C,D) is used to compute the message digest.
       Here each of A, B, C, D is a 32-bit register. These registers are
       initialized to the following values in hexadecimal, low-order bytes
       first):
    
    Rivest                                                          [Page 3]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
              word A: 01 23 45 67
              word B: 89 ab cd ef
              word C: fe dc ba 98
              word D: 76 54 32 10
    
    3.4 Step 4. Process Message in 16-Word Blocks
    
       We first define four auxiliary functions that each take as input
       three 32-bit words and produce as output one 32-bit word.
    
              F(X,Y,Z) = XY v not(X) Z
              G(X,Y,Z) = XZ v Y not(Z)
              H(X,Y,Z) = X xor Y xor Z
              I(X,Y,Z) = Y xor (X v not(Z))
    
       In each bit position F acts as a conditional: if X then Y else Z.
       The function F could have been defined using + instead of v since XY
       and not(X)Z will never have 1's in the same bit position.) It is
       interesting to note that if the bits of X, Y, and Z are independent
       and unbiased, then each bit of F(X,Y,Z) will be independent and
       unbiased.
    
       The functions G, H, and I are similar to the function F, in that they
       act in "bitwise parallel" to produce their output from the bits of X,
       Y, and Z, in such a manner that if the corresponding bits of X, Y,
       and Z are independent and unbiased, then each bit of G(X,Y,Z),
       H(X,Y,Z), and I(X,Y,Z) will be independent and unbiased. Note that
       the function H is the bit-wise "xor" or "parity" function of its
       inputs.
    
       This step uses a 64-element table T[1 ... 64] constructed from the
       sine function. Let T[i] denote the i-th element of the table, which
       is equal to the integer part of 4294967296 times abs(sin(i)), where i
       is in radians. The elements of the table are given in the appendix.
    
       Do the following:
    
       /* Process each 16-word block. */
       For i = 0 to N/16-1 do
    
         /* Copy block i into X. */
         For j = 0 to 15 do
           Set X[j] to M[i*16+j].
         end /* of loop on j */
    
         /* Save A as AA, B as BB, C as CC, and D as DD. */
         AA = A
         BB = B
    
    Rivest                                                          [Page 4]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
         CC = C
         DD = D
    
         /* Round 1. */
         /* Let [abcd k s i] denote the operation
              a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
         /* Do the following 16 operations. */
         [ABCD  0  7  1]  [DABC  1 12  2]  [CDAB  2 17  3]  [BCDA  3 22  4]
         [ABCD  4  7  5]  [DABC  5 12  6]  [CDAB  6 17  7]  [BCDA  7 22  8]
         [ABCD  8  7  9]  [DABC  9 12 10]  [CDAB 10 17 11]  [BCDA 11 22 12]
         [ABCD 12  7 13]  [DABC 13 12 14]  [CDAB 14 17 15]  [BCDA 15 22 16]
    
         /* Round 2. */
         /* Let [abcd k s i] denote the operation
              a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
         /* Do the following 16 operations. */
         [ABCD  1  5 17]  [DABC  6  9 18]  [CDAB 11 14 19]  [BCDA  0 20 20]
         [ABCD  5  5 21]  [DABC 10  9 22]  [CDAB 15 14 23]  [BCDA  4 20 24]
         [ABCD  9  5 25]  [DABC 14  9 26]  [CDAB  3 14 27]  [BCDA  8 20 28]
         [ABCD 13  5 29]  [DABC  2  9 30]  [CDAB  7 14 31]  [BCDA 12 20 32]
    
         /* Round 3. */
         /* Let [abcd k s i] denote the operation
              a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
         /* Do the following 16 operations. */
         [ABCD  5  4 33]  [DABC  8 11 34]  [CDAB 11 16 35]  [BCDA 14 23 36]
         [ABCD  1  4 37]  [DABC  4 11 38]  [CDAB  7 16 39]  [BCDA 10 23 40]
         [ABCD 13  4 41]  [DABC  0 11 42]  [CDAB  3 16 43]  [BCDA  6 23 44]
         [ABCD  9  4 45]  [DABC 12 11 46]  [CDAB 15 16 47]  [BCDA  2 23 48]
    
         /* Round 4. */
         /* Let [abcd k s i] denote the operation
              a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
         /* Do the following 16 operations. */
         [ABCD  0  6 49]  [DABC  7 10 50]  [CDAB 14 15 51]  [BCDA  5 21 52]
         [ABCD 12  6 53]  [DABC  3 10 54]  [CDAB 10 15 55]  [BCDA  1 21 56]
         [ABCD  8  6 57]  [DABC 15 10 58]  [CDAB  6 15 59]  [BCDA 13 21 60]
         [ABCD  4  6 61]  [DABC 11 10 62]  [CDAB  2 15 63]  [BCDA  9 21 64]
    
         /* Then perform the following additions. (That is increment each
            of the four registers by the value it had before this block
            was started.) */
         A = A + AA
         B = B + BB
         C = C + CC
         D = D + DD
    
       end /* of loop on i */
    
    Rivest                                                          [Page 5]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
    3.5 Step 5. Output
    
       The message digest produced as output is A, B, C, D. That is, we
       begin with the low-order byte of A, and end with the high-order byte
       of D.
    
       This completes the description of MD5. A reference implementation in
       C is given in the appendix.
    
    4. Summary
    
       The MD5 message-digest algorithm is simple to implement, and provides
       a "fingerprint" or message digest of a message of arbitrary length.
       It is conjectured that the difficulty of coming up with two messages
       having the same message digest is on the order of 2^64 operations,
       and that the difficulty of coming up with any message having a given
       message digest is on the order of 2^128 operations. The MD5 algorithm
       has been carefully scrutinized for weaknesses. It is, however, a
       relatively new algorithm and further security analysis is of course
       justified, as is the case with any new proposal of this sort.
    
    5. Differences Between MD4 and MD5
    
         The following are the differences between MD4 and MD5:
    
           1.   A fourth round has been added.
    
           2.   Each step now has a unique additive constant.
    
           3.   The function g in round 2 was changed from (XY v XZ v YZ) to
           (XZ v Y not(Z)) to make g less symmetric.
    
           4.   Each step now adds in the result of the previous step.  This
           promotes a faster "avalanche effect".
    
           5.   The order in which input words are accessed in rounds 2 and
           3 is changed, to make these patterns less like each other.
    
           6.   The shift amounts in each round have been approximately
           optimized, to yield a faster "avalanche effect." The shifts in
           different rounds are distinct.
    
    Rivest                                                          [Page 6]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
    References
    
       [1] Rivest, R., "The MD4 Message Digest Algorithm", RFC 1320, MIT and
           RSA Data Security, Inc., April 1992.
    
       [2] Rivest, R., "The MD4 message digest algorithm", in A.J.  Menezes
           and S.A. Vanstone, editors, Advances in Cryptology - CRYPTO '90
           Proceedings, pages 303-311, Springer-Verlag, 1991.
    
       [3] CCITT Recommendation X.509 (1988), "The Directory -
           Authentication Framework."
    
    APPENDIX A - Reference Implementation
    
       This appendix contains the following files taken from RSAREF: A
       Cryptographic Toolkit for Privacy-Enhanced Mail:
    
         global.h -- global header file
    
         md5.h -- header file for MD5
    
         md5c.c -- source code for MD5
    
       For more information on RSAREF, send email to <rsaref@rsa.com>.
    
       The appendix also includes the following file:
    
         mddriver.c -- test driver for MD2, MD4 and MD5
    
       The driver compiles for MD5 by default but can compile for MD2 or MD4
       if the symbol MD is defined on the C compiler command line as 2 or 4.
    
       The implementation is portable and should work on many different
       plaforms. However, it is not difficult to optimize the implementation
       on particular platforms, an exercise left to the reader. For example,
       on "little-endian" platforms where the lowest-addressed byte in a 32-
       bit word is the least significant and there are no alignment
       restrictions, the call to Decode in MD5Transform can be replaced with
       a typecast.
    
    A.1 global.h
    
    /* GLOBAL.H - RSAREF types and constants
     */
    
    /* PROTOTYPES should be set to one if and only if the compiler supports
      function argument prototyping.
    The following makes PROTOTYPES default to 0 if it has not already
    
    Rivest                                                          [Page 7]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
      been defined with C compiler flags.
     */
    #ifndef PROTOTYPES
    #define PROTOTYPES 0
    #endif
    
    /* POINTER defines a generic pointer type */
    typedef unsigned char *POINTER;
    
    /* UINT2 defines a two byte word */
    typedef unsigned short int UINT2;
    
    /* UINT4 defines a four byte word */
    typedef unsigned long int UINT4;
    
    /* PROTO_LIST is defined depending on how PROTOTYPES is defined above.
    If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it
      returns an empty list.
     */
    #if PROTOTYPES
    #define PROTO_LIST(list) list
    #else
    #define PROTO_LIST(list) ()
    #endif
    
    A.2 md5.h
    
    /* MD5.H - header file for MD5C.C
     */
    
    /* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
    rights reserved.
    
    License to copy and use this software is granted provided that it
    is identified as the "RSA Data Security, Inc. MD5 Message-Digest
    Algorithm" in all material mentioning or referencing this software
    or this function.
    
    License is also granted to make and use derivative works provided
    that such works are identified as "derived from the RSA Data
    Security, Inc. MD5 Message-Digest Algorithm" in all material
    mentioning or referencing the derived work.
    
    RSA Data Security, Inc. makes no representations concerning either
    the merchantability of this software or the suitability of this
    software for any particular purpose. It is provided "as is"
    without express or implied warranty of any kind.
    
    Rivest                                                          [Page 8]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
    These notices must be retained in any copies of any part of this
    documentation and/or software.
     */
    
    /* MD5 context. */
    typedef struct {
      UINT4 state[4];                                   /* state (ABCD) */
      UINT4 count[2];        /* number of bits, modulo 2^64 (lsb first) */
      unsigned char buffer[64];                         /* input buffer */
    } MD5_CTX;
    
    void MD5Init PROTO_LIST ((MD5_CTX *));
    void MD5Update PROTO_LIST
      ((MD5_CTX *, unsigned char *, unsigned int));
    void MD5Final PROTO_LIST ((unsigned char [16], MD5_CTX *));
    
    A.3 md5c.c
    
    /* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
     */
    
    /* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
    rights reserved.
    
    License to copy and use this software is granted provided that it
    is identified as the "RSA Data Security, Inc. MD5 Message-Digest
    Algorithm" in all material mentioning or referencing this software
    or this function.
    
    License is also granted to make and use derivative works provided
    that such works are identified as "derived from the RSA Data
    Security, Inc. MD5 Message-Digest Algorithm" in all material
    mentioning or referencing the derived work.
    
    RSA Data Security, Inc. makes no representations concerning either
    the merchantability of this software or the suitability of this
    software for any particular purpose. It is provided "as is"
    without express or implied warranty of any kind.
    
    These notices must be retained in any copies of any part of this
    documentation and/or software.
     */
    
    #include "global.h"
    #include "md5.h"
    
    /* Constants for MD5Transform routine.
     */
    
    Rivest                                                          [Page 9]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
    #define S11 7
    #define S12 12
    #define S13 17
    #define S14 22
    #define S21 5
    #define S22 9
    #define S23 14
    #define S24 20
    #define S31 4
    #define S32 11
    #define S33 16
    #define S34 23
    #define S41 6
    #define S42 10
    #define S43 15
    #define S44 21
    
    static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char [64]));
    static void Encode PROTO_LIST
      ((unsigned char *, UINT4 *, unsigned int));
    static void Decode PROTO_LIST
      ((UINT4 *, unsigned char *, unsigned int));
    static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int));
    static void MD5_memset PROTO_LIST ((POINTER, int, unsigned int));
    
    static unsigned char PADDING[64] = {
      0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    };
    
    /* F, G, H and I are basic MD5 functions.
     */
    #define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
    #define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
    #define H(x, y, z) ((x) ^ (y) ^ (z))
    #define I(x, y, z) ((y) ^ ((x) | (~z)))
    
    /* ROTATE_LEFT rotates x left n bits.
     */
    #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
    
    /* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
    Rotation is separate from addition to prevent recomputation.
     */
    #define FF(a, b, c, d, x, s, ac) { \
     (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
     (a) = ROTATE_LEFT ((a), (s)); \
    
    Rivest                                                         [Page 10]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
     (a) += (b); \
      }
    #define GG(a, b, c, d, x, s, ac) { \
     (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
     (a) = ROTATE_LEFT ((a), (s)); \
     (a) += (b); \
      }
    #define HH(a, b, c, d, x, s, ac) { \
     (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
     (a) = ROTATE_LEFT ((a), (s)); \
     (a) += (b); \
      }
    #define II(a, b, c, d, x, s, ac) { \
     (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
     (a) = ROTATE_LEFT ((a), (s)); \
     (a) += (b); \
      }
    
    /* MD5 initialization. Begins an MD5 operation, writing a new context.
     */
    void MD5Init (context)
    MD5_CTX *context;                                        /* context */
    {
      context->count[0] = context->count[1] = 0;
      /* Load magic initialization constants.
    */
      context->state[0] = 0x67452301;
      context->state[1] = 0xefcdab89;
      context->state[2] = 0x98badcfe;
      context->state[3] = 0x10325476;
    }
    
    /* MD5 block update operation. Continues an MD5 message-digest
      operation, processing another message block, and updating the
      context.
     */
    void MD5Update (context, input, inputLen)
    MD5_CTX *context;                                        /* context */
    unsigned char *input;                                /* input block */
    unsigned int inputLen;                     /* length of input block */
    {
      unsigned int i, index, partLen;
    
      /* Compute number of bytes mod 64 */
      index = (unsigned int)((context->count[0] >> 3) & 0x3F);
    
      /* Update number of bits */
      if ((context->count[0] += ((UINT4)inputLen << 3))
    
    Rivest                                                         [Page 11]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
       < ((UINT4)inputLen << 3))
     context->count[1]++;
      context->count[1] += ((UINT4)inputLen >> 29);
    
      partLen = 64 - index;
    
      /* Transform as many times as possible.
    */
      if (inputLen >= partLen) {
     MD5_memcpy
       ((POINTER)&context->buffer[index], (POINTER)input, partLen);
     MD5Transform (context->state, context->buffer);
    
     for (i = partLen; i + 63 < inputLen; i += 64)
       MD5Transform (context->state, &input[i]);
    
     index = 0;
      }
      else
     i = 0;
    
      /* Buffer remaining input */
      MD5_memcpy
     ((POINTER)&context->buffer[index], (POINTER)&input[i],
      inputLen-i);
    }
    
    /* MD5 finalization. Ends an MD5 message-digest operation, writing the
      the message digest and zeroizing the context.
     */
    void MD5Final (digest, context)
    unsigned char digest[16];                         /* message digest */
    MD5_CTX *context;                                       /* context */
    {
      unsigned char bits[8];
      unsigned int index, padLen;
    
      /* Save number of bits */
      Encode (bits, context->count, 8);
    
      /* Pad out to 56 mod 64.
    */
      index = (unsigned int)((context->count[0] >> 3) & 0x3f);
      padLen = (index < 56) ? (56 - index) : (120 - index);
      MD5Update (context, PADDING, padLen);
    
      /* Append length (before padding) */
      MD5Update (context, bits, 8);
    
    Rivest                                                         [Page 12]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
      /* Store state in digest */
      Encode (digest, context->state, 16);
    
      /* Zeroize sensitive information.
    */
      MD5_memset ((POINTER)context, 0, sizeof (*context));
    }
    
    /* MD5 basic transformation. Transforms state based on block.
     */
    static void MD5Transform (state, block)
    UINT4 state[4];
    unsigned char block[64];
    {
      UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
    
      Decode (x, block, 64);
    
      /* Round 1 */
      FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
      FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
      FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
      FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
      FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
      FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
      FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
      FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
      FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
      FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
      FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
      FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
      FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
      FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
      FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
      FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
    
     /* Round 2 */
      GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
      GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
      GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
      GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
      GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
      GG (d, a, b, c, x[10], S22,  0x2441453); /* 22 */
      GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
      GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
      GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
      GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
      GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
    
    Rivest                                                         [Page 13]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
      GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
      GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
      GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
      GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
      GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
    
      /* Round 3 */
      HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
      HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
      HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
      HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
      HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
      HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
      HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
      HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
      HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
      HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
      HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
      HH (b, c, d, a, x[ 6], S34,  0x4881d05); /* 44 */
      HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
      HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
      HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
      HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
    
      /* Round 4 */
      II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
      II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
      II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
      II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
      II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
      II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
      II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
      II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
      II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
      II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
      II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
      II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
      II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
      II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
      II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
      II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
    
      state[0] += a;
      state[1] += b;
      state[2] += c;
      state[3] += d;
    
      /* Zeroize sensitive information.
    
    Rivest                                                         [Page 14]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
    */
      MD5_memset ((POINTER)x, 0, sizeof (x));
    }
    
    /* Encodes input (UINT4) into output (unsigned char). Assumes len is
      a multiple of 4.
     */
    static void Encode (output, input, len)
    unsigned char *output;
    UINT4 *input;
    unsigned int len;
    {
      unsigned int i, j;
    
      for (i = 0, j = 0; j < len; i++, j += 4) {
     output[j] = (unsigned char)(input[i] & 0xff);
     output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
     output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
     output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
      }
    }
    
    /* Decodes input (unsigned char) into output (UINT4). Assumes len is
      a multiple of 4.
     */
    static void Decode (output, input, len)
    UINT4 *output;
    unsigned char *input;
    unsigned int len;
    {
      unsigned int i, j;
    
      for (i = 0, j = 0; j < len; i++, j += 4)
     output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
       (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
    }
    
    /* Note: Replace "for loop" with standard memcpy if possible.
     */
    
    static void MD5_memcpy (output, input, len)
    POINTER output;
    POINTER input;
    unsigned int len;
    {
      unsigned int i;
    
      for (i = 0; i < len; i++)
    
    Rivest                                                         [Page 15]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
     output[i] = input[i];
    }
    
    /* Note: Replace "for loop" with standard memset if possible.
     */
    static void MD5_memset (output, value, len)
    POINTER output;
    int value;
    unsigned int len;
    {
      unsigned int i;
    
      for (i = 0; i < len; i++)
     ((char *)output)[i] = (char)value;
    }
    
    A.4 mddriver.c
    
    /* MDDRIVER.C - test driver for MD2, MD4 and MD5
     */
    
    /* Copyright (C) 1990-2, RSA Data Security, Inc. Created 1990. All
    rights reserved.
    
    RSA Data Security, Inc. makes no representations concerning either
    the merchantability of this software or the suitability of this
    software for any particular purpose. It is provided "as is"
    without express or implied warranty of any kind.
    
    These notices must be retained in any copies of any part of this
    documentation and/or software.
     */
    
    /* The following makes MD default to MD5 if it has not already been
      defined with C compiler flags.
     */
    #ifndef MD
    #define MD 5
    #endif
    
    #include <stdio.h>
    #include <time.h>
    #include <string.h>
    #include "global.h"
    #if MD == 2
    #include "md2.h"
    #endif
    #if MD == 4
    
    Rivest                                                         [Page 16]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
    #include "md4.h"
    #endif
    #if MD == 5
    #include "md5.h"
    #endif
    
    /* Length of test block, number of test blocks.
     */
    #define TEST_BLOCK_LEN 1000
    #define TEST_BLOCK_COUNT 1000
    
    static void MDString PROTO_LIST ((char *));
    static void MDTimeTrial PROTO_LIST ((void));
    static void MDTestSuite PROTO_LIST ((void));
    static void MDFile PROTO_LIST ((char *));
    static void MDFilter PROTO_LIST ((void));
    static void MDPrint PROTO_LIST ((unsigned char [16]));
    
    #if MD == 2
    #define MD_CTX MD2_CTX
    #define MDInit MD2Init
    #define MDUpdate MD2Update
    #define MDFinal MD2Final
    #endif
    #if MD == 4
    #define MD_CTX MD4_CTX
    #define MDInit MD4Init
    #define MDUpdate MD4Update
    #define MDFinal MD4Final
    #endif
    #if MD == 5
    #define MD_CTX MD5_CTX
    #define MDInit MD5Init
    #define MDUpdate MD5Update
    #define MDFinal MD5Final
    #endif
    
    /* Main driver.
    
    Arguments (may be any combination):
      -sstring - digests string
      -t       - runs time trial
      -x       - runs test script
      filename - digests file
      (none)   - digests standard input
     */
    int main (argc, argv)
    int argc;
    
    Rivest                                                         [Page 17]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
    char *argv[];
    {
      int i;
    
      if (argc > 1)
     for (i = 1; i < argc; i++)
       if (argv[i][0] == '-' && argv[i][1] == 's')
         MDString (argv[i] + 2);
       else if (strcmp (argv[i], "-t") == 0)
         MDTimeTrial ();
       else if (strcmp (argv[i], "-x") == 0)
         MDTestSuite ();
       else
         MDFile (argv[i]);
      else
     MDFilter ();
    
      return (0);
    }
    
    /* Digests a string and prints the result.
     */
    static void MDString (string)
    char *string;
    {
      MD_CTX context;
      unsigned char digest[16];
      unsigned int len = strlen (string);
    
      MDInit (&context);
      MDUpdate (&context, string, len);
      MDFinal (digest, &context);
    
      printf ("MD%d (\"%s\") = ", MD, string);
      MDPrint (digest);
      printf ("\n");
    }
    
    /* Measures the time to digest TEST_BLOCK_COUNT TEST_BLOCK_LEN-byte
      blocks.
     */
    static void MDTimeTrial ()
    {
      MD_CTX context;
      time_t endTime, startTime;
      unsigned char block[TEST_BLOCK_LEN], digest[16];
      unsigned int i;
    
    Rivest                                                         [Page 18]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
      printf
     ("MD%d time trial. Digesting %d %d-byte blocks ...", MD,
      TEST_BLOCK_LEN, TEST_BLOCK_COUNT);
    
      /* Initialize block */
      for (i = 0; i < TEST_BLOCK_LEN; i++)
     block[i] = (unsigned char)(i & 0xff);
    
      /* Start timer */
      time (&startTime);
    
      /* Digest blocks */
      MDInit (&context);
      for (i = 0; i < TEST_BLOCK_COUNT; i++)
     MDUpdate (&context, block, TEST_BLOCK_LEN);
      MDFinal (digest, &context);
    
      /* Stop timer */
      time (&endTime);
    
      printf (" done\n");
      printf ("Digest = ");
      MDPrint (digest);
      printf ("\nTime = %ld seconds\n", (long)(endTime-startTime));
      printf
     ("Speed = %ld bytes/second\n",
      (long)TEST_BLOCK_LEN * (long)TEST_BLOCK_COUNT/(endTime-startTime));
    }
    
    /* Digests a reference suite of strings and prints the results.
     */
    static void MDTestSuite ()
    {
      printf ("MD%d test suite:\n", MD);
    
      MDString ("");
      MDString ("a");
      MDString ("abc");
      MDString ("message digest");
      MDString ("abcdefghijklmnopqrstuvwxyz");
      MDString
     ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
      MDString
     ("1234567890123456789012345678901234567890\
    1234567890123456789012345678901234567890");
    }
    
    /* Digests a file and prints the result.
    
    Rivest                                                         [Page 19]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
     */
    static void MDFile (filename)
    char *filename;
    {
      FILE *file;
      MD_CTX context;
      int len;
      unsigned char buffer[1024], digest[16];
    
      if ((file = fopen (filename, "rb")) == NULL)
     printf ("%s can't be opened\n", filename);
    
      else {
     MDInit (&context);
     while (len = fread (buffer, 1, 1024, file))
       MDUpdate (&context, buffer, len);
     MDFinal (digest, &context);
    
     fclose (file);
    
     printf ("MD%d (%s) = ", MD, filename);
     MDPrint (digest);
     printf ("\n");
      }
    }
    
    /* Digests the standard input and prints the result.
     */
    static void MDFilter ()
    {
      MD_CTX context;
      int len;
      unsigned char buffer[16], digest[16];
    
      MDInit (&context);
      while (len = fread (buffer, 1, 16, stdin))
     MDUpdate (&context, buffer, len);
      MDFinal (digest, &context);
    
      MDPrint (digest);
      printf ("\n");
    }
    
    /* Prints a message digest in hexadecimal.
     */
    static void MDPrint (digest)
    unsigned char digest[16];
    {
    
    Rivest                                                         [Page 20]
    
    RFC 1321              MD5 Message-Digest Algorithm            April 1992
    
      unsigned int i;
    
      for (i = 0; i < 16; i++)
     printf ("%02x", digest[i]);
    }
    
    A.5 Test suite
    
       The MD5 test suite (driver option "-x") should print the following
       results:
    
    MD5 test suite:
    MD5 ("") = d41d8cd98f00b204e9800998ecf8427e
    MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661
    MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
    MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
    MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
    MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") =
    d174ab98d277d9f5a5611c2c9f419d9f
    MD5 ("123456789012345678901234567890123456789012345678901234567890123456
    78901234567890") = 57edf4a22be3c955ac49da2e2107b67a
    
    Security Considerations
    
       The level of security discussed in this memo is considered to be
       sufficient for implementing very high security hybrid digital-
       signature schemes based on MD5 and a public-key cryptosystem.
    
    Author's Address
    
       Ronald L. Rivest
       Massachusetts Institute of Technology
       Laboratory for Computer Science
       NE43-324
       545 Technology Square
       Cambridge, MA  02139-1986
    
       Phone: (617) 253-5880
       EMail: rivest@theory.lcs.mit.edu
    
    Rivest                                                         [Page 21]
    


  • Lawilog schrieb:

    In diesem Satz kommt
    die 0 2 mal vor,
    die 1 10 mal,
    die 2 1 mal,
    die 3 1 mal,
    die 4 1 mal,
    die 5 1 mal,
    die 6 1 mal,
    die 7 1 mal,
    die 8 1 mal,
    die 9 1 mal.

    Besser, aber immer noch falsch.. die 2 gibts mehr als 1 mal 😉



  • mist.
    aber jetzt: :p

    In diesem Satz kommt
    die 0 1 mal vor,
    die 1 7 mal,
    die 2 3 mal,
    die 3 2 mal,
    die 4 1 mal,
    die 5 1 mal,
    die 6 1 mal,
    die 7 2 mal,
    die 8 1 mal,
    die 9 1 mal.

    😃



  • Lawilog schrieb:

    über genau das thema hab ich mir auch schon gedanken gemacht. und ich bin klar dafür, das das geht. es gibt keine rechenoperation die ncith umkehrbar ist. (auch wenn dabei mehrer lösungen möglich sind)

    Das ist die falsche Frage: Es geht darum, ob sie effizient umkehrbar ist. Und das kann auf mit hoher Wahrscheinlichkeit negativ beantwortet werden:

    Kennst Du 3SAT? Du hast ne Aussagenlogische Formel, die aus je 3 mit "Oder "Verknüpften Literalen besteht (den sogenannten Klauseln) und diese Klauseln sind dann mit "und" verknüpft. Jetzt ist die Frage, ob diese Formel erfüllbar ist.
    Für jede der Klauseln ist das furchtbar einfach nachzuprüfen: Man kann direkt ne Belegung angeben, daß sie wahr wird. Der Haken: Die Frage, ob es möglich ist, daß alle gleichzeitig wahr werden ist dennoch NP-vollständig. Das heißt mit großer Wahrscheinlichkeit gibt es keinen polynomialen Algorithmus der dieses Problem lösen kann. Man geht davon aus, daß nur exponentielle Lösungen existieren... man grob gesprochen also nur durchprobieren kann.

    MfG Jester


Anmelden zum Antworten