Rätsel zur Wahrscheinlichkeitsberechnung



  • finix schrieb:

    thread beobachter schrieb:

    finix is hier echt der obertroll 😃

    Ach ja. Und wer bist du? 🙄

    jemand der nicht so verbissen darauf besteht, dass seine meinung die richtige is, und den thread schmunzelnd mitliest 🤡



  • b7f7 schrieb:

    da steht immer noch nix von irgeneinem Zufall.

    Na und? Was hat dies mit der Korrektheit von 0.5 zu tun.

    Bye, TGGC (Fakten)



  • TGGC schrieb:

    b7f7 schrieb:

    da steht immer noch nix von irgeneinem Zufall.

    Na und? Was hat dies mit der Korrektheit von 0.5 zu tun.
    Bye, TGGC

    alles



  • hehehehe schrieb:

    finix schrieb:

    thread beobachter schrieb:

    finix is hier echt der obertroll 😃

    Ach ja. Und wer bist du? 🙄

    jemand der nicht so verbissen darauf besteht, dass seine meinung die richtige is, und den thread schmunzelnd mitliest 🤡

    Schön dass du deinen Spaß hast 🙂
    Ich bin da auch nicht allzu verbissen, zumindest nicht andere davon zu überzeugen, deshalb bin ich ja damals auch ausgestiegen... weiß nur nicht warum ich ein Troll sein soll bloß weil ich den ein oder anderen Schwachsinn der hier verbreitet wird kommentiere!?

    TGGC schrieb:

    finix schrieb:

    Ich meinte "das [sic] ein am Fenster stehendes Kind männlich ist."

    So, so. Aha. Und was soagt uns das?

    Dass du dich mal wieder dumm stellst und an, kontextbezogen relativ abwegigen, semantischen Kleinigkeiten aufhängst statt die aufgeworfenen Fragen zu beantworten? 🙄

    TGGC schrieb:

    b7f7 schrieb:

    da steht immer noch nix von irgeneinem Zufall.

    Na und? Was hat dies mit der Korrektheit von 0.5 zu tun.

    Dass der Wahrscheinlichkeitswert auf dem eure Lösung basiert frei erfunden ist.



  • finix schrieb:

    hehehehe schrieb:

    finix schrieb:

    thread beobachter schrieb:

    finix is hier echt der obertroll 😃

    Ach ja. Und wer bist du? 🙄

    jemand der nicht so verbissen darauf besteht, dass seine meinung die richtige is, und den thread schmunzelnd mitliest 🤡

    Schön dass du deinen Spaß hast 🙂
    Ich bin da auch nicht allzu verbissen, zumindest nicht andere davon zu überzeugen, deshalb bin ich ja damals auch ausgestiegen... weiß nur nicht warum ich ein Troll sein soll bloß weil ich den ein oder anderen Schwachsinn der hier verbreitet wird kommentiere!?

    TGGC schrieb:

    finix schrieb:

    Ich meinte "das [sic] ein am Fenster stehendes Kind männlich ist."

    So, so. Aha. Und was soagt uns das?

    Dass du dich mal wieder dumm stellst und an, kontextbezogen relativ abwegigen, semantischen Kleinigkeiten aufhängst statt die aufgeworfenen Fragen zu beantworten? 🙄

    TGGC schrieb:

    b7f7 schrieb:

    da steht immer noch nix von irgeneinem Zufall.

    Na und? Was hat dies mit der Korrektheit von 0.5 zu tun.

    Dass der Wahrscheinlichkeitswert auf dem eure Lösung basiert frei erfunden ist.

    falsch.

    das Problem ist so lang undefiniert wie nicht sicher ist:
    - ob man zufällig eine Zwei-Kinder-Familie wählt und festell das diese einen Jungen hat
    - ob man zufällig ein Kind aus allen Zwei-Kinder-Familien wählt und feststellt, daß dieses ein Junge ist

    damit hängt alles am Zufall



  • So wie es aussieht dürfen sich die Schüler über die Prüfungen in Zukunft freuen! Es ist alles zufällig, was auf dem Blatt steht. Somit muss man beim lesen einer Aufgabe immer vom Zufall ausgehen. Keine Antwort ist mehr absolut, weil die Frage auf einem Zufall basiert. Und mit einer genug langen Argumentation über den Zufall lässt sich vielleicht auch noch eine gute Note erschleichen, wer weiss? 😃



  • Juhui! schrieb:

    So wie es aussieht dürfen sich die Schüler über die Prüfungen in Zukunft freuen! Es ist alles zufällig, was auf dem Blatt steht. Somit muss man beim lesen einer Aufgabe immer vom Zufall ausgehen. Keine Antwort ist mehr absolut, weil die Frage auf einem Zufall basiert. Und mit einer genug langen Argumentation über den Zufall lässt sich vielleicht auch noch eine gute Note erschleichen, wer weiss? 😃

    Man stelle sich folgendes Bild vor: Der Lehrer schreibt eine Aufgabe an die Wandtafel. Sie lautet: 1 + 1. Natürlich hält TGGC, Banknachbar von Optimizer, ganz wild auf und ruft: "Herr Lehrer, ich weiss die Antwort, es gibt 3." Der Lehrer meint: "Nein TGGC, das ist leider nicht korrekt". TGGC anwortet: "Doch doch, hätten Sie nun zufällig aus einer 1 eine 2 gemacht, dann stimmt es wieder. Also habe ich einwandfrei bewiesen, dass 1 + 1 eben 3 gibt". 😃



  • b7f7 schrieb:

    TGGC schrieb:

    b7f7 schrieb:

    da steht immer noch nix von irgeneinem Zufall.

    Na und? Was hat dies mit der Korrektheit von 0.5 zu tun.
    Bye, TGGC

    alles

    Aha. Na dann ist ja gut.

    finix schrieb:

    Dass du dich mal wieder dumm stellst und an, kontextbezogen relativ abwegigen, semantischen Kleinigkeiten aufhängst statt die aufgeworfenen Fragen zu beantworten? 🙄

    Welche Frage denn, hast du eine sinnvolle gestellt? Wenn ja, bitte zitiere sie mir noch einmal.

    finix schrieb:

    TGGC schrieb:

    b7f7 schrieb:

    da steht immer noch nix von irgeneinem Zufall.

    Na und? Was hat dies mit der Korrektheit von 0.5 zu tun.

    Dass der Wahrscheinlichkeitswert auf dem eure Lösung basiert frei erfunden ist.

    Welcher "Wahrscheinlichkeitswert" denn? Und warum soll er erfunden sein?

    b7f7 schrieb:

    das Problem ist so lang undefiniert wie nicht sicher ist:
    - ob man zufällig eine Zwei-Kinder-Familie wählt und festell das diese einen Jungen hat
    - ob man zufällig ein Kind aus allen Zwei-Kinder-Familien wählt und feststellt, daß dieses ein Junge ist

    Zunächst einmal ist das sicher. Denn die Aufgabenstellung sagt nichts anderes und daher muss man dies nach der Regel des unzureichenden Grundes annehmen. Ausserdem hat eine Wahrscheinlichkeit nicht zwangsläufig damit zu tun, ob eine Auswahl zufällig geschieht.

    Bye, TGGC (Fakten)



  • TGGC|_work schrieb:

    b7f7 schrieb:

    das Problem ist so lang undefiniert wie nicht sicher ist:
    - ob man zufällig eine Zwei-Kinder-Familie wählt und festell das diese einen Jungen hat
    - ob man zufällig ein Kind aus allen Zwei-Kinder-Familien wählt und feststellt, daß dieses ein Junge ist

    Zunächst einmal ist das sicher. Denn die Aufgabenstellung sagt nichts anderes und daher muss man dies nach der Regel des unzureichenden Grundes annehmen. Ausserdem hat eine Wahrscheinlichkeit nicht zwangsläufig damit zu tun, ob eine Auswahl zufällig geschieht.
    Bye, TGGC

    Was ist da sicher? das sind zwei grundverschiedene Modelle.



  • TGGC schrieb:

    finix schrieb:

    Dass du dich mal wieder dumm stellst und an, kontextbezogen relativ abwegigen, semantischen Kleinigkeiten aufhängst statt die aufgeworfenen Fragen zu beantworten? 🙄

    Welche Frage denn, hast du eine sinnvolle gestellt? Wenn ja, bitte zitiere sie mir noch einmal.

    Schaust du hier:

    <a href= schrieb:

    finix">

    <a href= schrieb:

    TGGC">
    (...)
    Zunächst zu P(B):
    Wenn ein Kind am Fenster steht, so ist sein Geschlecht mit einer Chance von 50% männlich, da am Fenster stehen und das Geschlecht unabhängig sind und wir eine Geschlechterverteilung von 1:1 annehmen. Daher gilt P( B )= 0.5.
    (...)

    Du hast keine Ahnung wie groß die Wahrscheinlichkeit dass ein Junge am Fenster stehen würde war; lediglich dass dieses Ereignis eingetreten ist.



  • Lehrer schrieb:

    Juhui! schrieb:

    So wie es aussieht dürfen sich die Schüler über die Prüfungen in Zukunft freuen! Es ist alles zufällig, was auf dem Blatt steht. Somit muss man beim lesen einer Aufgabe immer vom Zufall ausgehen. Keine Antwort ist mehr absolut, weil die Frage auf einem Zufall basiert. Und mit einer genug langen Argumentation über den Zufall lässt sich vielleicht auch noch eine gute Note erschleichen, wer weiss? 😃

    Man stelle sich folgendes Bild vor: Der Lehrer schreibt eine Aufgabe an die Wandtafel. Sie lautet: 1 + 1. Natürlich hält TGGC, Banknachbar von Optimizer, ganz wild auf und ruft: "Herr Lehrer, ich weiss die Antwort, es gibt 3." Der Lehrer meint: "Nein TGGC, das ist leider nicht korrekt". TGGC anwortet: "Doch doch, hätten Sie nun zufällig aus einer 1 eine 2 gemacht, dann stimmt es wieder. Also habe ich einwandfrei bewiesen, dass 1 + 1 eben 3 gibt". 😃

    Nur, dass ich und TGGC nicht mehr in die Schule gehen und eher noch der Lehrern was erklären können, statt umgekehrt.

    finix (an TGGC) schrieb:

    Du hast keine Ahnung wie groß die Wahrscheinlichkeit dass ein Junge am Fenster stehen würde war; lediglich dass dieses Ereignis eingetreten ist.

    Und sinnvollerweise wird eine gleichverteilte Geburtenrate und eine gleichverteilte Wahrscheinlichkeit, welches Kind am Fenster steht, angenommen.
    Die Lösung, die 2/3 ergibt nimmt an, dass die Geburtenrate gleichverteilt ist, aber, falls ein Mädchen existiert, es in Ketten gelegt ist und niemals eine Chance gehabt hätte, an das Fenster zu gehen. Was ist die sinnvollere Annahme?



  • Optimizer schrieb:

    finix (an TGGC) schrieb:

    Du hast keine Ahnung wie groß die Wahrscheinlichkeit dass ein Junge am Fenster stehen würde war; lediglich dass dieses Ereignis eingetreten ist.

    Und sinnvollerweise wird eine gleichverteilte Geburtenrate und eine gleichverteilte Wahrscheinlichkeit, welches Kind am Fenster steht, angenommen.
    Die Lösung, die 2/3 ergibt nimmt an, dass die Geburtenrate gleichverteilt ist, aber, falls ein Mädchen existiert, es in Ketten gelegt ist und niemals eine Chance gehabt hätte, an das Fenster zu gehen. Was ist die sinnvollere Annahme?

    Das hatten wir doch damals schon.

    Niemand - oder zuindest nicht ich - nimmt an dass das Mädchen in Ketten liegt; das war immer, und ist scheinbar immer noch, allein eure Erfindung/Fehlinterpretation.
    Der Fall das ein Junge am Fenster steht ist bereits eingetreten. Ganz gleich wie hoch die Wahrscheinlichkeit dafür war. Und wir wissen ganz einfach nicht unter welchen Umständen sie wie hoch war.

    Sieh's mal so:
    P("2 Mädchen") = 0
    Dem würdest du zustimmen, oder? Schließt du daraus jetzt das beide Lösungen davon ausgehen das Eltern mit 2 Kindern niemals nur Mädchen haben?



  • b7f7 schrieb:

    TGGC|_work schrieb:

    b7f7 schrieb:

    das Problem ist so lang undefiniert wie nicht sicher ist:
    - ob man zufällig eine Zwei-Kinder-Familie wählt und festell das diese einen Jungen hat
    - ob man zufällig ein Kind aus allen Zwei-Kinder-Familien wählt und feststellt, daß dieses ein Junge ist

    Zunächst einmal ist das sicher. Denn die Aufgabenstellung sagt nichts anderes und daher muss man dies nach der Regel des unzureichenden Grundes annehmen. Ausserdem hat eine Wahrscheinlichkeit nicht zwangsläufig damit zu tun, ob eine Auswahl zufällig geschieht.
    Bye, TGGC

    Was ist da sicher? das sind zwei grundverschiedene Modelle.

    Die Aufgabe sagt eindeutig, wie es gemeint sein muss.

    @finix:
    Darauf hatte ich schon geantwortet, finix nun auch noch einmal:

    Diese Wahrscheinlichkeit ist auch unwichtig. Wichtig ist, mit welcher Wahrscheinlichkeit ein am Fenster stehendes Kind männlich ist. Und diese ist, übereinstimmend nach Alltagserfahrung und nach der "Regel des unzureichenden Grundes" 0.5.

    finix schrieb:

    Niemand - oder zuindest nicht ich - nimmt an dass das Mädchen in Ketten liegt; das war immer, und ist scheinbar immer noch, allein eure Erfindung/Fehlinterpretation. [...]
    Sieh's mal so:
    P("2 Mädchen") = 0
    Dem würdest du zustimmen, oder? Schließt du daraus jetzt das beide Lösungen davon ausgehen das Eltern mit 2 Kindern niemals nur Mädchen haben?

    Nein, das kann man daraus nicht folgern. Aber aus P( MM )= 0, P( JM ) = 2/3, P( JJ ) = 1/3 folgt, das es keine Familie mit JM gibt, in der das Mädchen am Fenster steht. Das ist Fakt. Keine Fehlinterpretation.

    Bye, TGGC (Fakten)



  • TGGC|_work schrieb:

    @finix:
    Darauf hatte ich schon geantwortet, finix nun auch noch einmal:

    Diese Wahrscheinlichkeit ist auch unwichtig. Wichtig ist, mit welcher Wahrscheinlichkeit ein am Fenster stehendes Kind männlich ist. Und diese ist, übereinstimmend nach Alltagserfahrung und nach der "Regel des unzureichenden Grundes" 0.5.

    Ach so, ja.
    Alltagserfahrung? Glaube ich nicht wirklich, das ist nichts weiter als eine Behauptung deinerseits. Hast du eine Quelle wo man diese Zahl nachlesen kann?
    "Regel des unzureichenden Grundes"? Wie groß ist die Wahrscheinlichkeit dass du bis vor 3 Minuten, dem Zeitpunkt zu dem dich ein allmächtiges, grünes Nilpferd samt deiner Erinnerungen erschaffen hat, gar nicht existiert hast? 0.5?
    Sieh es ein, der Junge wurde am Fenster gesehen; es ist schon passiert, ganz gleich wie die Wahrscheinlichkeit dafür war!

    TGGC|_work schrieb:

    finix schrieb:

    Niemand - oder zuindest nicht ich - nimmt an dass das Mädchen in Ketten liegt; das war immer, und ist scheinbar immer noch, allein eure Erfindung/Fehlinterpretation. [...]
    Sieh's mal so:
    P("2 Mädchen") = 0
    Dem würdest du zustimmen, oder? Schließt du daraus jetzt das beide Lösungen davon ausgehen das Eltern mit 2 Kindern niemals nur Mädchen haben?

    Nein, das kann man daraus nicht folgern. Aber aus P( MM )= 0, P( JM ) = 2/3, P( JJ ) = 1/3 folgt, das es keine Familie mit JM gibt, in der das Mädchen am Fenster steht. Das ist Fakt. Keine Fehlinterpretation.

    Warum kann man das nicht folgern? Das wäre doch genau eure Logik, nicht?
    (Optimizer ist immer noch herzlich eingeladen sich dazu zu äußern - am besten mit Begründung, welche TGGC in der Eile vergessen zu haben scheint...)



  • Optimizer schrieb:

    Nur, dass ich und TGGC nicht mehr in die Schule gehen und eher noch der Lehrern was erklären können, statt umgekehrt.

    Aber nicht in Deutsch. 😡



  • finix schrieb:

    Alltagserfahrung? Glaube ich nicht wirklich, das ist nichts weiter als eine Behauptung deinerseits. Hast du eine Quelle wo man diese Zahl nachlesen kann?
    "Regel des unzureichenden Grundes"?
    Sieh es ein, der Junge wurde am Fenster gesehen; es ist schon passiert, ganz gleich wie die Wahrscheinlichkeit dafür war!

    Was soll das jetzt? Willst du ernsthaft die 1:1 Verteilung der Geschlechter in Frage stellen? Dann kannst du aber auch 2/3 nicht ausrechnen. Und natürlich wurde der Junge am Fenster gesehen, darum rechnen wir ja auch die bedingte Wahrscheinlichkeit: wie hoch ist die Chance auf Schwester wenn ein Junge am Fenster steht.

    finix schrieb:

    TGGC|_work schrieb:

    finix schrieb:

    P("2 Mädchen") = 0
    Dem würdest du zustimmen, oder? Schließt du daraus jetzt das beide Lösungen davon ausgehen das Eltern mit 2 Kindern niemals nur Mädchen haben?

    Nein, das kann man daraus nicht folgern. Aber aus P( MM )= 0, P( JM ) = 2/3, P( JJ ) = 1/3 folgt, das es keine Familie mit JM gibt, in der das Mädchen am Fenster steht. Das ist Fakt. Keine Fehlinterpretation.

    Warum kann man das nicht folgern? Das wäre doch genau eure Logik, nicht?
    (Optimizer ist immer noch herzlich eingeladen sich dazu zu äußern - am besten mit Begründung, welche TGGC in der Eile vergessen zu haben scheint...)

    Nein, das wäre nicht unsere Logik. Ihr behauptet doch immer, MM fällt weg und darum bleibt JM, MJ und JJ übrig. Wie kann denn nun aber JM übrig bleiben? Genau weil der Junge am Fenster steht, nicht das Mädchen. Und wie kann MJ übrig bleiben? Auch nur weil der Junge am Fenster steht und nicht das Mädchen. Also bleibt kein MJ oder JM übrig, in dem ein Mädchen am Fenster stehen könnte.

    Ich erinnere auch noch einmal an eure legendäre Rechnung:

    dooya schrieb:

    In der Aufgabenstellung wird nun gefragt, mit welcher Wahrscheinlichkeit ein Mädchen unter den Kindern ist (Ereignis B), wenn man einen Jungen am Fenster sieht (Ereignis A), also
    P(BA)P(B | A).
    Dies kann bekanntlich berechnet werden nach
    P(BA)=ABP(A)P(B | A) = \frac{A \cap B}{P(A)}
    [...]
    und natürlich ist P(A \cap 😎 = P (\{\{M,J\}, \{J,M}}\}) = .5

    Hier wird also behauptet, das die Verbundwahrscheinlichkeit von "ein Junge steht am Fenster" und "es gibt ein Mädchen" gleich der Wahrscheinlichkeit es gibt ein Mädchen und einen Jungen entspricht. Also wenn es ein Jungen am Fenster gibt und eine Mädchen woanders dann ist es das Gleiche wie es gibt einen Jungen und ein Mädchen? Das kann nur stimmen, wenn jeweils alle Jungen am Fenster sind und die Mädchen nie!

    Dagegen handelt es sich bei P("2 Mädchen") = 0 um die Wahrscheinlichkeit: "in der Familie gibt es zwei Mädchen unter der Voraussetzung, das ein Junge am Fenster steht". Unter der Voraussetzung, das ein Junge am Fenster steht, kann es aber nicht zwei Mädchen geben, und folglich muss die Wahrscheinlichkeit dafür auch 0 sein.

    Bye, TGGC (Fakten)



  • finix schrieb:

    Optimizer schrieb:

    finix (an TGGC) schrieb:

    Du hast keine Ahnung wie groß die Wahrscheinlichkeit dass ein Junge am Fenster stehen würde war; lediglich dass dieses Ereignis eingetreten ist.

    Und sinnvollerweise wird eine gleichverteilte Geburtenrate und eine gleichverteilte Wahrscheinlichkeit, welches Kind am Fenster steht, angenommen.
    Die Lösung, die 2/3 ergibt nimmt an, dass die Geburtenrate gleichverteilt ist, aber, falls ein Mädchen existiert, es in Ketten gelegt ist und niemals eine Chance gehabt hätte, an das Fenster zu gehen. Was ist die sinnvollere Annahme?

    Das hatten wir doch damals schon.

    Niemand - oder zuindest nicht ich - nimmt an dass das Mädchen in Ketten liegt; das war immer, und ist scheinbar immer noch, allein eure Erfindung/Fehlinterpretation.
    Der Fall das ein Junge am Fenster steht ist bereits eingetreten.

    Nur weil dieser Fall eingetreten ist, kannst du nicht dessen Wahrscheinlichkeit ignorieren. Sonst würde das Ziegenproblem schlichtweg nicht funktionieren. Du sagst, der Junge steht schon am Fenster, wie es dazu kam, sei egal, ist es aber keinesfalls. Wenn du das ignorierst, hast du das Mädchen in Ketten gelegt (hmmm könnte mir gefallen, wie alt ist sie denn?).

    Weil du zu dem anderen Punkt noch eine Äußerung wolltest: Nein P("2 Mädchen") ist nicht 0, sondern es ist nur der Fall eingetreten, dass es nicht so ist, du musst entsprechend die richtigen Wege im Entscheidungsbaum verfolgen. Ich sag's nochmal: Mal' den Baum. P("2 Mädchen") ist nur unter der Voraussetzung, dass ein Junge am Fenster steht 0, das macht nen Unterschied.



  • Optimizer schrieb:

    Nein P("2 Mädchen") ist nicht 0, sondern es ist nur der Fall eingetreten, dass es nicht so ist, du musst entsprechend die richtigen Wege im Entscheidungsbaum verfolgen. Ich sag's nochmal: Mal' den Baum. P("2 Mädchen") ist nur unter der Voraussetzung, dass ein Junge am Fenster steht 0, das macht nen Unterschied.

    Es war vor der Beobachtung nicht 0.
    Diese eine Familie hat definitiv keine 2 Mädchen.
    danach kommt aber die Unterscheidung in:
    - Die gewählte Familie hat mindestens einen Sohn
    nur Kombinationen mit Jungen werden selektiert ->2/3
    - Das gewählte Kind ist Junge.
    unabhängig vom Jungen ->1/2
    bei beiden darf man natürlich annehmen dsa Bernoulli/Laplace gilt.



  • TGGC|_work schrieb:

    finix schrieb:

    Alltagserfahrung? Glaube ich nicht wirklich, das ist nichts weiter als eine Behauptung deinerseits. Hast du eine Quelle wo man diese Zahl nachlesen kann?
    "Regel des unzureichenden Grundes"?
    Sieh es ein, der Junge wurde am Fenster gesehen; es ist schon passiert, ganz gleich wie die Wahrscheinlichkeit dafür war!

    Was soll das jetzt? Willst du ernsthaft die 1:1 Verteilung der Geschlechter in Frage stellen? Dann kannst du aber auch 2/3 nicht ausrechnen. Und natürlich wurde der Junge am Fenster gesehen, darum rechnen wir ja auch die bedingte Wahrscheinlichkeit: wie hoch ist die Chance auf Schwester wenn ein Junge am Fenster steht.

    LOL. Musst du jetzt schon Zitate fälschen? 🙄
    Zu deiner Aussage äußere ich mich eher nicht: entweder bist du einfach nur dumm/kannst nicht lesen oder du trollst absichtlich - wie auch immer, Zeitverschwendung.



  • Optimizer schrieb:

    Weil du zu dem anderen Punkt noch eine Äußerung wolltest: Nein P("2 Mädchen") ist nicht 0, sondern es ist nur der Fall eingetreten, dass es nicht so ist, du musst entsprechend die richtigen Wege im Entscheidungsbaum verfolgen.

    Wie hoch ist die Wahrscheinlichkeit dass diese Familie 2 Mädchen hat, wenn nicht 0?


Anmelden zum Antworten