128 Bit verschlüsselung?



  • Stimmt ihr hab zum glück Recht.

    Die Daten werden komplett einmal verschlüsselt und nur kurz temp entschlüsselt beim Live-Zugriff. Und dann wieder verschlüsselt drauf. Das heisst das man ja nur die Daten so rekonstruieren könnte, welche kurz davor irgendwo temp entschlüsselt wurden.

    Nun gut dann bin ich beruhigt.



  • CDW schrieb:

    Und mal zum mitrechnen wie lange man für 128-bit braucht:
    2^128=3,4028236692093846346337460743177e+38
    man nehme an in einer Sekunde kann man 10 000 000 Möglichkeiten ausprobieren (was schon ziemlich viel wäre - man denke nur daran dass man bei der entschlüsselung nicht nur den verschlüsselten Text durch die Routine jagen muss, sondern auch noch feststellen, ob er jetzt entschlüsselt wurde - und da steht normalerweise kein Schlüsselwort mit "juhu, sie habens gesschaft"...) trotzdem würde man noch 1079028307080601418897052,915499 Jahre brauchen...

    Man ist durchschnittlich nach der halben Zeit fertig. </erbsenzähl> 🙂

    Allerdings würde man hier wohl eher nach Schwächen im Algorithmus suchen oder versuchen, die Passphrase zu knacken (die sehr wahrscheinlich weniger als 128 Bit wert ist).



  • cd9000 schrieb:

    Man ist durchschnittlich nach der halben Zeit fertig. </erbsenzähl> 🙂

    Ist egal, du hast trotzdem O(2^n) Aufwand. Meine Erbse ist länger als deine. 😉



  • Kurzer Einschub:

    Wie sicher ist eigentlich eine Passphrase die z.B. aus 30 Buchstaben besteht? Das Problem ist ja meistens, dass man die Passphrase teilweise täglich benötigt und sie sich auch merken können möchte.

    Somit bleiben willkürliche Kombinationen von Sonderzeichen, Ziffern und Buchstaben nicht in Frage.

    Was meint ihr?



  • Gerade dann ist eine willkürliche Kombo perfekt. Die ersten paar Tage musst du zwar nachgucken, aber dann kennst du das Passwort auswendig. Z.B. hatte ich mein jetziges Admin-Passwort ein paar Monate auf meinem normalen Konto. Die 14-stellige Kombo aus Sonderzeichen, Buchstaben und Zahlen kann ich ohne Probleme im Schlaf eintippen.



  • Kann man das algorithmisch bestimmen, wie lange man durchschnittlich brauchen würde um ein Passwort aus willkürlichen Kombinationen von x-ASCII Zeichen zu knacken?

    Also so etwas wie 65 hoch der Anzahl der Zeichen, wobei die 65 die in Frage kommende ASCII Zeichen repräsentieren würde?



  • CDW schrieb:

    Aber wie soll man feststellen ob die Bits auch wirklich alle gleichzeitig überschrieben wurden: beispiel: 0111001 wurde mal mit 0100001 überschrieben (also nur die mittleren nullen), einmal mit 00 am Anfang und dann mit dem "Schredderprogramm" alles komplett mit 0. Wenn man die Daten wiederherstellen will - wie will man unterscheiden ob die Infos nun "original" 0011001 oder 0100001 oder sonstwas waren?

    Der trick mit der wiederherstellung früherer daten basiert darauf dass die schreib/leseköpfe mechanisch nicht immer die gleiche position anfahren oder umgekehrt bei jedem schreibvorgang eine andere position anfahren. daher wäre es theroretisch schon möglich zu rekonstruieren bei welchem schreibvorgang welche daten geschrieben wurden. wie gesage höchst theoretisch.
    Kurt



  • naja, ihr Erbsenzähler 😉 und keinem ist aufgefallen dass es höchst theoretische Werte waren. Denn in der Regel benutzt kein Mensch alle ASCII Zeichen für seine Passwörter 😛 . Man könnte hier allerdings einschieben dass diese gehasht werden können - das sei aber mal mit vorausgesetzt. Also 30 Buchstaben,+29 Großbuchstaben, +10 Ziffern,+30 Sonderzeichen. Macht insgesamt schon 99 benutzbare Zeichen (ob sie auch alle benutzt werden, ist eine andere Frage - vielleicht 10 der Sonderzeichen).

    Kann man das algorithmisch bestimmen, wie lange man durchschnittlich brauchen würde um ein Passwort aus willkürlichen Kombinationen von x-ASCII Zeichen zu knacken?

    8 Zeichen, alles nur kleinbuchstaben, keine sonderzeichen oder umlaute:
    26*26*26*26*26*26*26*26=26^8=208827064576 möglichkeiten. Nimmt man Großbuchstaben dazu:52^8=53459728531456
    Die Schwiriegkeit wäre eher zu bestimmen wieviele Operation in der Sekunde man schaffen würde - um annähernd die Zeit bestimmen zu können.


Anmelden zum Antworten