Rätsel zur Wahrscheinlichkeitsberechnung
-
finix schrieb:
Hast du meinen Kommentar zu deinem Herz-Beispiel gelesen?
Ja, welche Relevanz hat das, was soll uns das sagen.
finix schrieb:
Und wenn du unbedingt die Wahrscheinlichkeit dass ein Junge am Fenster steht berechnen willst: wo taucht in deiner Rechnung die Wahrscheinlichkeit auf dass es überhaupt einen Jungen gibt auf?
Wieso sollte die Wahrscheinlichkeit "Es gibt einen Jungen" nötig sein um die Wahrscheinlichkeit "Kind am Fenster ist ein Junge" zu berechnen?
finix schrieb:
Wenn du so darauf beharrst dass es auch ein Mädchen sein könnte obwohl wir wissen dass es ein Junge ist?
[quote="finix"]Das ist keine Frage.
Bye, TGGC
-
TGGC|_work schrieb:
finix schrieb:
Hast du meinen Kommentar zu deinem Herz-Beispiel gelesen?
Ja, welche Relevanz hat das, was soll uns das sagen.
Dass es auch eine schwarze Karte hätte sein können.
-
dooya schrieb:
Bei wikipedia gibt es eine Gegenüberstellung der beiden Lösungsansätze:
http://de.wikipedia.org/wiki/Bedingte_Wahrscheinlichkeit#Beispiele
Nein, hier wird gelöst wenn das erste Kind ein Mädchen ist oder mindestens ein Kind ein Mädchen ist. Aber nicht das Kind am Fenster ist ein Mädchen. Wenn uns das was nützen soll, dann zeigen wie man unsere Aufgabe auf einen dieser Fälle zurückführt.
Bye, TGGC
-
finix schrieb:
TGGC|_work schrieb:
finix schrieb:
Hast du meinen Kommentar zu deinem Herz-Beispiel gelesen?
Ja, welche Relevanz hat das, was soll uns das sagen.
Dass es auch eine schwarze Karte hätte sein können.
Und?
Bye, TGGC
-
Hier nochmal der entscheidente Unterschied: http://www.mathpages.com/home/kmath036.htm
Bye, TGGC
-
TGGC|_work schrieb:
dooya schrieb:
Bei wikipedia gibt es eine Gegenüberstellung der beiden Lösungsansätze:
http://de.wikipedia.org/wiki/Bedingte_Wahrscheinlichkeit#Beispiele
Nein, hier wird gelöst wenn das erste Kind ein Mädchen ist oder mindestens ein Kind ein Mädchen ist. Aber nicht das Kind am Fenster ist ein Mädchen. Wenn uns das was nützen soll, dann zeigen wie man unsere Aufgabe auf einen dieser Fälle zurückführt.
Bye, TGGC
Im Fall 1 wird dort angenommen, dass die beiden thematisierten Ereignisse unabhängig sind, eine Annahme die deine Argumentation teilt. Im zweiten Fall wird nicht von Unabhängigkeit ausgegangen, so wie finix und ich es auch tun.
-
Von welcher Abhängigkeit sprichst du?
Bye, TGGC
-
TGGC|_work schrieb:
Hier nochmal der entscheidente Unterschied: http://www.mathpages.com/home/kmath036.htm
Bye, TGGC
Genau, die folgenden Absätze dürften die entscheidenden sein:
Suppose there are 100 fathers in an auditorium, and each is the father
of two children. Each father is instructed to tell you (truthfully)
if at least one of his children is a boy. This will apply to about
75 of the fathers. Now, of those 75 Dads, 2/3 (i.e., 50) have a
daughter, and 1/3 (i.e., 25) have two sons. Thus, if you want to
guess the gender of their "other" child, the chances are 2/3 that
it is a girl. (Of course, for the remaining 25 fathers - those
who did not report at least one son - you know immediately they
have two daughters.)However, suppose instead that all 100 fathers were instructed to tell
you either (a) "At least one of my children is a boy" or (b) "At least
one of my children is a girl". Based on what each father tells you,
you try to guess the gender of his "other" child. Strictly speaking
this problem is indeterminate, but if it's also stipulated that fathers
with both a son and a daughter should flip a coin to decide what to
tell you, then the probability that the "other" child is of the
opposite gender is exactly 1/2. The breakdown is25 have two sons, and they report at least one son
25 have a son and daughter, and report at least one son25 have a son and daughter, and report at least one daughter
25 have two daughters, and they report at least one daughterThus, regardless of what a particular father reports, you have only a
50% chance of correctly guessing the gender of his "other" child.Nun bleibt zu klären, welcher der beiden Ansätze mit unserer Aufgabenstellung gemeint war.
-
TGGC|_work schrieb:
Von welcher Abhängigkeit sprichst du?
Bye, TGGC
Von der von dir benutzten stochastischen Abhängigkeit der Ereignisse A= "Kind, das nicht am Fenster ist, ist ein Junge" und B= "Kind, welches am Fenster steht, ist ein Junge".
Im 1. Fall des wikipedia-Beispiels wird von der Unabhängigkeit der Ereignisse "das erste Kind ist ein Mädchen" und "das zweite Kind ist ein Mädchen" ausgegangen.
-
<a href= schrieb:
At Least One Girl">
Strictly speaking, the problem is underspecified in this form, because
we don't know how the father decides which piece of information to
give us if he has a choice (i.e., if he has one child of each gender).[...]
However, suppose instead that all 100 fathers were instructed to tell
you either (a) "At least one of my children is a boy" or (b) "At least
one of my children is a girl". Based on what each father tells you,
you try to guess the gender of his "other" child. Strictly speaking
this problem is indeterminate, but if it's also stipulated that fathers
with both a son and a daughter should flip a coin to decide what to
tell you, then the probability that the "other" child is of the
opposite gender is exactly 1/2.Das heißt also immer wenn wir nicht wissen wie wahrscheinlich etwas ist, werfen wir eine Münze bzw einen Würfel; wir legen also fest dass jede Möglichkeit gleich wahrscheinlich ist, um nicht willkürlich eine Wahrscheinlichkeit anzunehmen. ( )
Darüber hinaus legen wir fest dass eingetretene Ereignisse, sofern sich nicht ermitteln lässt wie wahrscheinlich ihr eintreten war, zu ignorieren. ( )
Auf unser Rätsel angewandt ignorieren wir die Tatsache dass die Familie einen Jungen hat und werfen stattdessen eine Münze um zu ermitteln ob sie ein Mädchen hat. ( )
-
dooya schrieb:
Von der von dir benutzten stochastischen Abhängigkeit der Ereignisse A= "Kind, das nicht am Fenster ist, ist ein Junge" und B= "Kind, welches am Fenster steht, ist ein Junge".
A und B sind von einander abhängig? Der Meinung bin ich nicht.
Bye, TGGC
-
finix schrieb:
Das heißt also immer wenn wir nicht wissen wie wahrscheinlich etwas ist, werfen wir eine Münze bzw einen Würfel; wir legen also fest dass jede Möglichkeit gleich wahrscheinlich ist, um nicht willkürlich eine Wahrscheinlichkeit anzunehmen. ( )
Das ist so gängige Praxis. Nennt sich "Laplace Regel" oder "Regel des unzureichenden Grundes".
finix schrieb:
Darüber hinaus legen wir fest dass eingetretene Ereignisse, sofern sich nicht ermitteln lässt wie wahrscheinlich ihr eintreten war, zu ignorieren. ( )
Auf unser Rätsel angewandt ignorieren wir die Tatsache dass die Familie einen Jungen hat und werfen stattdessen eine Münze um zu ermitteln ob sie ein Mädchen hat. ( )Das steht nicht da.
Bye, TGGC
-
TGGC|_work schrieb:
dooya schrieb:
Bei wikipedia gibt es eine Gegenüberstellung der beiden Lösungsansätze:
http://de.wikipedia.org/wiki/Bedingte_Wahrscheinlichkeit#Beispiele
Nein, hier wird gelöst wenn das erste Kind ein Mädchen ist oder mindestens ein Kind ein Mädchen ist. Aber nicht das Kind am Fenster ist ein Mädchen. Wenn uns das was nützen soll, dann zeigen wie man unsere Aufgabe auf einen dieser Fälle zurückführt.
Wie wär's wenn du den Artikel 'korrigierst'? Schließlich steht da "Eine Mutter hat zwei Kinder und wird nach dem Geschlecht der Kinder gefragt", analog zu "At Least One Girl". Und selbst wenn da gar nichts stünde wüssten wir immer noch nicht von welchem Kind wir das Geschlecht erfahren haben, müssten also wieder würfeln.
-
In dem Artikel ist es doch eindeutig beschrieben.
Bye, TGGC
-
TGGC|_work schrieb:
finix schrieb:
Das heißt also immer wenn wir nicht wissen wie wahrscheinlich etwas ist, werfen wir eine Münze bzw einen Würfel; wir legen also fest dass jede Möglichkeit gleich wahrscheinlich ist, um nicht willkürlich eine Wahrscheinlichkeit anzunehmen. ( )
Das ist so gängige Praxis. Nennt sich "Laplace Regel" oder "Regel des unzureichenden Grundes".
Ach so. Das wusste ich nicht. Aber könnten wir nicht auch einfach entscheidungstheoretisch eine andere Regel zugrunde legen?
TGGC|_work schrieb:
In dem Artikel ist es doch eindeutig beschrieben.
Kneifst du jetzt?
-
Ok.
Bye, TGGC
-
TGGC|_work schrieb:
dooya schrieb:
Von der von dir benutzten stochastischen Abhängigkeit der Ereignisse A= "Kind, das nicht am Fenster ist, ist ein Junge" und B= "Kind, welches am Fenster steht, ist ein Junge".
A und B sind von einander abhängig? Der Meinung bin ich nicht.
Bye, TGGC
Das steht dir natürlich frei, und im Rahmen deines Ansatzes zur Aufgabenlösung mag diese Annahme auch gerechtfertigt sein. (Allerdings könnte man dann fragen, warum du so kompliziert rechnest, wo doch für unabhängige Ereignisse ohnehin gilt P(A|B) = P(A).)
In der von mir favorisierten Herleitung wird halt davon ausgegangen, dass man aus "ein Junge steht am Fenster folgern kann, dass gilt "mindestens ein Kind ein Junge" und dieses Ereignis ist dann halt nicht unabhängig von dem Ereignis "anderes Kind ist ein Mädchen".
-
Hast du immer noch nicht den Unterschied von "ein Kind ist ein Mädchen" und "das Kind am Fenster ist ein Mädchen" verstanden?
Bye, TGGC
-
dooya schrieb:
In der von mir favorisierten Herleitung wird halt davon ausgegangen, dass man aus "ein Junge steht am Fenster folgern kann, dass gilt "mindestens ein Kind ein Junge" und dieses Ereignis ist dann halt nicht unabhängig von dem Ereignis "anderes Kind ist ein Mädchen".
Witzig, der obige Satz gilt auf für dich. Aus "ein Junge steht am Fenster" kann man "mindestens ein Kind ein Junge" folgern, aber die beiden Ereignisse sind eben nicht äquivalent.
Wenn ich besipielsweise Frage, wie hoch ist die Chance das ich die Herz Dame ziehe, vorausgesetzt ich ziehe eine Herz Karte. Die Chance dazu ist 1/8. Ich kann aber nicht einfach sagen aus "ich ziehe Herz" folgt, "ich ziehe rot" und daher ist die Chance plötzlich nur noch 1/16.
Oder versuch mal weiterzurechnen mit Anzahl Jungen ist >= 0, das folgt ja auch aus "Junge steht am Fenster"
Bye, TGGC
-
TGGC|_work schrieb:
dooya schrieb:
In der von mir favorisierten Herleitung wird halt davon ausgegangen, dass man aus "ein Junge steht am Fenster folgern kann, dass gilt "mindestens ein Kind ein Junge" und dieses Ereignis ist dann halt nicht unabhängig von dem Ereignis "anderes Kind ist ein Mädchen".
Witzig, der obige Satz gilt auf für dich. Aus "ein Junge steht am Fenster" kann man "mindestens ein Kind ein Junge" folgern, aber die beiden Ereignisse sind eben nicht äquivalent.
Wenn ich besipielsweise Frage, wie hoch ist die Chance das ich die Herz Dame ziehe, vorausgesetzt ich ziehe eine Herz Karte. Die Chance dazu ist 1/8. Ich kann aber nicht einfach sagen aus "ich ziehe Herz" folgt, "ich ziehe rot" und daher ist die Chance plötzlich nur noch 1/16.
Oder versuch mal weiterzurechnen mit Anzahl Jungen ist >= 0, das folgt ja auch aus "Junge steht am Fenster"
Das hat nie jemand behauptet. Warum führst du es immer wieder an?