Rätsel zur Wahrscheinlichkeitsberechnung



  • scrub schrieb:

    finix schrieb:

    scrub schrieb:

    wenn man aber, wie es hier geschieht, einfach aus der aussage "junge steht am fenster" ein "es gibt einen jungen" macht, dann kann man natürlich daraus auf 2/3 kommen, das ist ja zweifelsohne nachvollziehbar.

    Man ändert nicht die Originalaussage. Sondern man gewinnt eine Information aus der Originalaussage mit der man etwas anfangen kann!
    Dem Ereignis "ein Junge wird am Fenster stehend gesehen" lässt sich keine Wahrscheinlichkeit zuordnen. Allerdings kann man auch nicht aus beiden Aussagen zusammengenommen schließen, wie geschehen, dass sich Jungen immer vordrängeln. Dass der Junge am Fenster steht ist schlicht ein eingetretenes Ereignis, daraus lässt sich in keinster Weise ableiten dass es ein sicheres Ereignis war, höchstens dass es kein unmögliches gewesen sein kann.

    scrub schrieb:

    an dieser stelle entbrannte eine diskussion darüber, welche annahme wohl sinnvoller sei; ergebnis ist, daß es ein fehler in der aufgabenstellung ist, daß man überhaupt den obigen punkt diskutieren kann- weil das in der aufgabenstelleung eben, je nach sichtweise, nicht klar forumliert wurde.

    Welchen Fehler siehst du in der Aufgabenstellung? Sie ist doch durchaus klar beschrieben.

    Man könnte höchstens behaupten dass sie unlösbar ist, da man bei der 2/3-Herleitung einfach annimmt dass das Ereignis "der Junge ist am Fenster zu sehen" eingetreten ist.
    Andererseits könnte man bei der 1/2-Herleitung dann bemängeln dass man die Information die Nachbarn haben 2 Kinder als gegeben nimmt und ihr keine frei erfundene Wahrscheinlichkeit zuordnet...

    ich mache eine vernünftige annahme darüber, mit welcher wahrscheinlichkeit ein kind am fenster steht oder nicht.

    Du machst eine vernünftige Annahme darüber, mit welcher Wahrscheinlichkeit ein Kind am Fenster steht oder nicht. Sicher? Auf welcher Basis bist du zu dieser Annahme gekommen? Ich kann einsehen dass, ohne weitere Informationen zu kennen, der Junge nicht wahrscheinlicher als seine potentielle Schwester am Fenster. Warum jedoch sollte ich annehmen, wiederum ohne weitere Informationen zu kennen, dass der Junge genau so wahrscheinlich wie jemand anderes am Fenster stehen würde?

    scrub schrieb:

    dasselbe haben wir alle übrigens gemacht, als wir davon ausgingen, die wahrscheinlichkeit für die paare JJ, MM, MJ, JM sei jeweils 0,5 * 0,5. natürlich kann ich mich jetzt auch auf den standpunkt stellen, daß man ja gar nicht weiß, mit welcher relativen häufigkeit mädchen und jungen vorhanden sind. sodann ist die aufgabe unlösbar, fertig. das kann doch nicht dein ernst sein?

    Das scheint mir eine vernünftige Abschätzung der Wahrscheinlichkeit. Sie wird evtl. nicht ganz stimmen aber sie kommt wohl ungefähr hin. Gäbe es erfahrungsgemäß doppelt so viele Jungen wie Mädchen (oder auch umgekehrt) wäre die Wahrscheinlichkeit von 0,5 wiederum nicht vertretbar.

    Wie hoch ist die Wahrscheinlichkeit dass bei einem Münzwurf Kopf kommt? 50%? Und die restlichen 50% dass Zahl kommt? Falsch! Daraus müsste man zum Schluss kommen dass die Landung auf der Kante ein unmögliches Ereignis wäre. Denken wir uns also die Kante weg. Aber sind beide Seiten der Münze genau gleich? Natürlich nicht! Spielt es keine Rolle wie die Münze geworfen wird? Natürlich!
    Ist es sinnvoll anzunehmen die Chance sei 50/50?
    Klar.

    scrub schrieb:

    aus "ein junge steht am fenster" lassen sich zwei informationen gewinnen:
    1. es gibt mindestens einen jungen
    2. er steht am fenster

    jetzt kann man entweder ganz einfach nachdenken, die todsichere vorgehensweise ist, alle fälle durchzugehen.

    ja, und jetzt muß man eben eine annahme machen, mit welcher wahrscheinlichkeit welches geschlecht am fenster steht.

    nehmen wir an, mädchen und junge stehen gleichwahrscheinlich am fenster, gelangt man zum ergebmis 1/2.

    zum ergebnis 2/3 kommt man aber nur, wenn bei MJ und JM immer der junge am fenster steht.

    jetzt muß man mit nur noch erklären, warum die letztere annahme plausibler ist.

    Die "letztere Annahme" ist eine Erfindung der 1/2-Fraktion.
    Schließt ihr aus der Eingangsformulierung "eine Familie mit zwei Kindern" dass die 2 Kinder ein sicheres Ereignis waren?
    Ich für meinen Teil nehme an dass der Junge am Fenster stehend gesehen wurde.
    Daraus schließe ich allein dass die Wahrscheinlichkeit dieses Ereignisses größer 0% war; alles darüber hinaus ist pure Spekulation, jegliche Annahme reine Willkür.



  • Hallo TGGC,
    es hat zwar etwas länger gedauert, aber ich habe deine Lösung als auch die Darstellung der entsprechenden Mengen nochmal gelesen und nun doch noch einige Fragen.

    Alle Fragen beziehen sich entweder auf diese Version deiner Lösung:

    TGGC schrieb:

    Aufgabe: Eine Familie hat zwei Kinder. Eines der Kinder steht am Fenster. Dieses Kind ist ein Junge. Wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?

    Wir wollen den beobachteten Zustand "Kind, welches am Fenster steht, ist ein Junge" B nennen. Alle unsere Betrachtungen müssen also unter der Voraussetzung das B eintritt, gemacht werden, kurz "wenn B". Wir wollen das Kind, welches nicht am Fenster steht "anderes Kind" nennen.

    Wir stellen fest:
    P( "anderes Kind ist ein Mädchen" wenn B ) + P( "anderes Kind ist ein Junge" wenn B ) = 1
    P( "anderes Kind ist ein Mädchen" wenn B ) = 1 - P( "anderes Kind ist ein Junge" wenn B )

    Die gilt, weil sich die Junge/Mädchen ausschliest, aber auch keine dritte Möglichkeit existiert. Daher muss die Summe 1 beider Wahrscheinlichkeiten sein.

    Wie gross ist nun die Wahrscheinlichkeit für "anderes Kind ist ein Junge" unter der Bedingung "Kind, welches am Fenster steht, ist ein Junge"? Also A= "anderes Kind ist ein Junge" und B= "Kind, welches am Fenster steht, ist ein Junge", kurz geschrieben: gesucht wird P(A|B).

    P( "anderes Kind ist ein Junge" wenn B )= P(A|B)= P( A geschnitten B ) / P( B )

    Zunächst zu P(B):
    Wenn ein Kind am Fenster steht, so ist sein Geschlecht mit einer Chance von 50% männlich, da am Fenster stehen und das Geschlecht unabhängig sind und wir eine Geschlechterverteilung von 1:1 annehmen. Daher gilt P( B )= 0.5.

    Kommen wir zu P( A geschnitten B ):
    Die Wahrscheinlichkeit das "Kind, welches am Fenster steht, ist ein Junge" und "anderes Kind ist ein Junge" ist auch recht einfach zu erkennen! Dies kann nur gelten wenn die Familie zwei Jungen hat. Die Wahrscheinlichkeit, das als erstes Kind ein Junge geboren wird, ist 0.5. Für das zweite Kind ebenso. Da die Geburten unabhängig voneinander sind, ergibt sich die Wahrscheinlichkeit, das beides eintritt, durch Multiplikation. Also P( A geschnitten 😎 = 0.5 * 0.5 = 0.25

    Damit ergibt sich:

    P( anderes Kind ist ein Junge wenn B )= P(A|B) = 0.25 / 0.5
    P( anderes Kind ist ein Junge wenn B )= P(A|B) = 0.5

    und

    P( anderes Kind ist ein Mädchen wenn B ) = 1 - 0.5
    P( anderes Kind ist ein Mädchen wenn B ) = 0.5

    [rev. 5]

    oder diese Version der Mengendarstellung:

    TGGC schrieb:

    Man kann weder A noch B aus dieser "Grundgesamtheit spezifizieren". Denn A und B werden durch "(nicht) am Fenster stehen" definiert, was in deiner "Grundgesamtheit" nicht vorkommt. Diese beachtet ja nicht, wer am Fenster steht, z.b. {M,J} kann man dies nicht eindeutig A zuordnen. Es geht aber so:

    {M,M, Kind 1 am Fenster }
    {M,M, Kind 2 am Fenster }
    {J,M, Kind 1 am Fenster }
    {J,M, Kind 2 am Fenster }
    {M,J, Kind 1 am Fenster }
    {M,J, Kind 2 am Fenster }
    {J,J, Kind 1 am Fenster }
    {J,J, Kind 2 am Fenster }

    P(A)= P( {J,M, Kind 2 am Fenster }, {M,J, Kind 1 am Fenster }, {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.5

    P(B)= P( {J,M, Kind 1 am Fenster }, {M,J, Kind 2 am Fenster }, {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.5

    zur Vollständigkeit
    P(A geschnitten 😎 = P( {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.25

    Bevor ich mit den Fragen beginne, nur noch ein kleiner Hinweis: Die Mengendarstellung stimmt nicht mit der Herleitung von ABA \cap B in deiner Lösung überein. Aber die von dir errechneten Wahrscheinlichkeiten sind in beiden Fällen gleich, man muss also nur beides aufeinander abstimmen.

    Der Übersichtlichkeit halber habe ich die Fragen durchnummeriert und trenne sie durch Doppelstriche voneinander. Am Ende jedes Abschnitts versuche ich jedesmal meine Frage noch einmal in einem Satz zusammenzufassen (jeweils im Fettdruck gesetzt).

    Nun die Fragen:
    ===============================================================

    (1) Innerhalb deiner Lösung (Textversion) schreibst du:

    TGGC schrieb:

    Wir wollen das Kind, welches nicht am Fenster steht "anderes Kind" nennen.

    Wo steht innerhalb der Aufgabenstellung, dass das andere Kind nicht am Fenster steht?

    In der Aufgabenstellung steht lediglich:

    Stammtischler schrieb:

    Nun sieht man am Fenster einen Jungen stehen

    Es steht nicht dort, dass genau ein Junge am Fenster steht. Insbesondere steht dort nicht, dass genau ein Kind am Fenster steht.

    Aus welcher Aussage kannst du also ableiten, dass ein "Kind, welches nicht am Fenster steht" existiert?

    Zur Bedeutung dieser Frage siehe auch (3).

    ===============================================================

    (2) Innerhalb deiner Lösung (Textversion) schreibst du:

    TGGC schrieb:

    [...] da am Fenster stehen und das Geschlecht unabhängig sind[...]

    Aus welcher Aussage kannst du ableiten, dass "am Fenster stehen und das Geschlecht unabhängig sind"? In der Aufgabe wird diese Information m.E. nicht erwähnt.

    Nun könnte man auch ohne Informationen eine Vermutung über den Zusammenhang zwischen "am Fenster stehen" und "Geschlecht" anstellen. Sollte man dann aber nicht von stochastischer Abhängigkeit ausgehen, weil das die schwächere Annahme ist?

    Alternativ könnte man natürlich auch aufgrund von Erfahrung oder systematischer empirischer Forschung auf den Zusammenhang zwischen diesen Variablen schließen und ich vermute mal, dass du dies hier getan hast. Allerdings sollte man auch versuchen seine Entscheidung zu begründen oder belegen. Vielleicht kannst du dies ja nachholen.

    Wie kannst du also begründen, dass deiner Meinung nach "am Fenster stehen und das Geschlecht unabhängig sind"?

    (Ich persönlich würde eher vermuten, dass "Geschlecht" und am "Fenster stehen" nicht unabhängig sind, aber das tut zunächst nichts zur Sache. Bei Bedarf kann ich meine Gedanken hierzu aber gern nachliefern.)

    ===============================================================

    (3) Innerhalb der Mengendarstellung schreibst du:

    TGGC schrieb:

    {M,M, Kind 1 am Fenster }
    {M,M, Kind 2 am Fenster }
    {J,M, Kind 1 am Fenster }
    {J,M, Kind 2 am Fenster }
    {M,J, Kind 1 am Fenster }
    {M,J, Kind 2 am Fenster }
    {J,J, Kind 1 am Fenster }
    {J,J, Kind 2 am Fenster }

    Die die Aufstellung der Ergebnismenge sieht für mich so aus, als könne immer nur ein Kind am Fenster stehen. Wie schon unter (1) nachgefragt, ist für mich nicht klar, aus welcher Aussage du dies folgerst. Würde die Variable "welches Kind am Fenster" aber um das 3. Ereignis "beide Kinder am Fenster" erweitert, würde sich die Ergebnismenge ändern.

    Woraus kannst du ableiten, dass die Variable "Kind am Fenster" nur die beiden Ausprägungen "Kind 1" und "Kind 2" haben kann?

    **
    ===============================================================**

    (4) Innerhalb der Mengendarstellung schreibst du:

    TGGC schrieb:

    P(A)= P( {J,M, Kind 2 am Fenster }, {M,J, Kind 1 am Fenster }, {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.5

    P(B)= P( {J,M, Kind 1 am Fenster }, {M,J, Kind 2 am Fenster }, {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.5

    zur Vollständigkeit
    P(A geschnitten 😎 = P( {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.25

    Da du nicht erwähnst, wie du die Wahrscheinlichkeiten von A, B und ABA \cap B errechnet hast, vermute ich mal, dass du sie durch Abzählen festgestellt hast. Allerdings ist diese Vorgehensweise nur in Laplace-Räumen möglich. Es fehlt aber eine Begründung oder Herleitung, für die Annahme, dass die Ergebnismenge ein Laplace-Raum ist.

    Natürlich bieten Erfahrungswissen, empirische Forschung und eine gewisse gebräuchliche Handhabung z.T. recht starke Anhaltspunkte. Beispielsweise ist es allgemein üblich für die Variable P("M")=P("J") = 0.5 als gute Näherung zu benutzen. Insbesondere gibt es für diese Annahme eine vergleichsweise starke empirische Evidenz. Ebenso stark verbreitet ist die Annahme, dass das kartesische Produkt Geschlecht ×\timesGeschlecht = {J,M}×{J,M}={{J,J}{J,M}{M,J}{M,M}}\{J,M\} \times \{J,M\} = \{\{J,J\}\{J,M\}\{M,J\}\{M,M\}\} ein Laplace-Raum ist und auch hier ist die empirische Evidenz vergleichsweise gut. Auch folgt aus diesen Beobachtungen, dass das Geschlecht von Geschwistern unabhängig ist.

    Nun führst du aber die Variable "Kind am Fenster" mit den Ausprägungen "Kind 1" und "Kind 2" ein und scheinst vorauszusetzen, dass P("Kind 1") = P("Kind 2") = 0.5 ist, denn sonst könntest du die Ergebnismenge nicht als Laplace betrachten und daher P(A) nicht durch Auszählen feststellen.

    Es fehlt jegliche Begründung für diese Setzung. Im Laufe der Diskussion fragte dich finix jedoch in einem anderen Fall, warum du von gleichwahrscheinlichen Ereignissen ausgehst und ich vermute deine damalige Antwort würdest du auch in diesem Fall wiederholen:

    TGGC schrieb:

    Das ist so gängige Praxis. Nennt sich "Laplace Regel" oder "Regel des unzureichenden Grundes".
    Quelle: http://www.c-plusplus.net/forum/viewtopic-var-p-is-838220.html#838220

    Mir ist die "Regel des unzureichenden Grundes" bislang nur innerhalb der (wirtschaftwissenschaftlichen) Entscheidungstheorie begegnet, nicht jedoch innerhalb einer Stochastik-Aufgabe. Kannst du ggf. mit Quellen eine solche Verwendung dieser Regel in diesem Kontext angeben, damit man deine Vorgehensweise nachvollziehen kann.

    Im Übrigen scheint es neben der Laplace-Regel noch eine ganze Reihe anderer Entscheidungsheuristiken geben, die zu anderen Entscheidungen führen, aber gleichberechtigt neben der Laplace-Regel zu stehen scheinen (z.B. MaxiMin, MaxiMax, Regel des kleinsten Bedauerns). Insbesondere ist für mich nicht ersichtlich, ob "Regel des unzureichenden Grundes" gebräuchlicher ist als eine der anderen Regeln.

    Mein wesentlicher Einwand daher jedoch, dass es für die Anwendung der Laplace-Regel keinerlei Grund gibt, man kann es tun oder lassen oder auch eine beliebige andere Regel anwenden. Die solange es keine empirischen Daten zur Verteilung der Variable "Kind am Fenster" gibt, ist die Festsetzung P("Kind 1") = P("Kind 2") = 0.5 genauso gut oder schlecht wie jede andere (z.B. P("Kind 1") = 0.3, P("Kind 2") = 0.7). In diesem Fall wäre deine Ergebnismenge jedoch kein Laplace-Raum mehr und ich vermute, dass dies auch negative Auswirkungen auf deinen Lösungsweg (Textversion) hat.

    Warum gilt für die Variable "Kind am Fenster" mit den Ausprägungen "Kind 1" und "Kind 2", dass P("Kind 1") = P("Kind 2") = 0.5?

    ===============================================================

    edit
    Quote repariert und ein Fragezeichen ergänzt.



  • zu 1./3.
    Dann ersetzen wir halt "Kind, dass nicht am Fenster" steht durch "Kind, welches nicht gesehen wurde", wenn man solche Spitzfindigkeiten auch noch beachten will.

    zu 2./4. Die Regel des unzureichenden Grundes ist Basis der Wachrscheinlichkeitsrechung, die ihr ja übrigens auch benutzt. Aber bitte rechne doch nach mit 1 - P("Kind 1") = P("Kind 2") und x= P("Kind 1"). Das Ergebnis ändert sich nicht.

    Bye, TGGC



  • TGGC schrieb:

    zu 1./3.
    Dann ersetzen wir halt "Kind, dass nicht am Fenster" steht durch "Kind, welches nicht gesehen wurde", wenn man solche Spitzfindigkeiten auch noch beachten will.

    Das verändert das Problem nicht, da in der Aufgabe nicht steht, dass das zweite Kind nicht gesehen wurde. Dort steht nur "Ein Junge steht am Fenster". Es können also auch beide Kinder am Fenster gestanden haben. Hierdurch verändert sich die Ergebnismenge.

    TGGC schrieb:

    zu 2./4. Die Regel des unzureichenden Grundes ist Basis der Wachrscheinlichkeitsrechung, [...]

    edit siehe nächsten Beitrag

    TGGC schrieb:

    zu 2./4. [...] die ihr ja übrigens auch benutzt. [...]

    Ich habe die "Regel des unzureichenden Grundes" m.W. nicht benutzt. Die (übliche) Annahme der Gleichverteilung von Jungen und Mädchen basiert auf empirischen Daten.

    TGGC schrieb:

    [...] Aber bitte rechne doch nach mit 1 - P("Kind 1") = P("Kind 2") und x= P("Kind 1"). Das Ergebnis ändert sich nicht.

    Bye, TGGC

    Sobald P("Kind 1") \neq P("Kind 2") gilt ist der von dir angegebene Ergebnisraum kein Laplace-Raum mehr, du darfst also die Wahrscheinlichkeiten nicht mehr durch auszählen bestimmen. Auch u.U. könnte auch deine Unabhängikeitsvermutung durch eine solche Konstellation verletzt sein.

    TGGC schrieb:

    zu 2./4.

    Eine Antwort zu Frage (2) kann ich hier nicht entdecken. Kannst du aus der "Regel des des unzureichenden Grundes" auch Aussagen über die Unabhängigkeit von Variablen ableiten?

    Kannst du bitte noch die mathematische Notation für deinen Ergebnisraum nachliefern?



  • TGGC schrieb:

    [...]
    zu 2./4. Die Regel des unzureichenden Grundes ist Basis der Wachrscheinlichkeitsrechung, [...]

    Bist du sicher, dass man dieses Prinzip tatsächlich als Basis der Wahrscheinlichkeitsrechnung bezeichnen kann?

    Im Übrigen ist es nicht unumstritten:

    Principle of Insufficient Reason

    A principle that was first enunciated by Jakob Bernoulli which states that if we are ignorant of the ways an event can occur (and therefore have no reason to believe that one way will occur preferentially compared to another), the event will occur equally likely in any way.

    Keynes (1921, pp. 52-53) referred to the principle as the principle of indifference, formulating it as "if there is no known reason for predicating of our subject one rather than another of several alternatives, then relatively to such knowledge the assertions of each of these alternatives have an equal probability." Keynes strenuously opposed the principle and devoted an entire chapter of his book in an attempt to refute it.

    The principle was also considered by Poincaré (1912). Quelle: http://mathworld.wolfram.com/PrincipleofInsufficientReason.html

    Für weitere Betrachtungen zur Gültigkeit dieser Regel siehe auch http://en.wikipedia.org/wiki/Principle_of_indifference#History.

    Insbesondere ist mir unklar, wie man einen Beweis bzw. eine Aufgabenlösung aus diesem Prinzip ableiten kann, da aus ihr nicht hervorgeht, dass die Annahme einer Gleichverteilung "richtiger" als die Annahme einer beliebigen anderen.

    Ein anderer Fall liegt vor, wenn du bspw. im Rahmen einer Bayesianischen Parameterschätzung eine geeignete a priori Verteilung auswählen möchtest, denn hier kann das "Principle of Insufficient Reason" Anwendung finden. Allerdings wird mit zunehmender Datenmenge die Wahl der a priori Verteilung irrelevant für das Ergebnis.
    Hervorzuheben ist hierbei, dass es sich bei diesem Verfahren nicht um einen Beweis oder eine Aufgabenlösung handelt, sondern um ein Datenanalyseverfahren.



  • TGGC schrieb:

    zu 1./3.
    Dann ersetzen wir halt "Kind, dass nicht am Fenster" steht durch "Kind, welches nicht gesehen wurde", wenn man solche Spitzfindigkeiten auch noch beachten will.

    zu 2./4. Die Regel des unzureichenden Grundes ist Basis der Wachrscheinlichkeitsrechung, die ihr ja übrigens auch benutzt. Aber bitte rechne doch nach mit 1 - P("Kind 1") = P("Kind 2") und x= P("Kind 1"). Das Ergebnis ändert sich nicht.

    Deine Aussage "Die Regel des unzureichenden Grundes ist Basis der Wachrscheinlichkeitsrechung, die ihr ja übrigens auch benutzt" ist schlicht und einfach falsch, und es müsste dir seit einigen Seiten bekannt sein dass dies der Fall ist. Soviel Lesekompetenz traue ich dir durchaus zu.



  • gähn.

    Bye, TGGC



  • TGGC schrieb:

    gähn.

    Dachte ich mir.
    Bye.



  • TGGC schrieb:

    gähn.

    Bye, TGGC

    Schade. Ich hatte zumindest gehofft, dass du die mathematische Notation deiner Ergebnismenge noch nachlieferst; sollte doch eigentlich kein Problem sein, oder?

    Ausserdem hätte ich auch noch gern nochmal über diese Aussage diskutiert:

    TGGC schrieb:

    Ausserdem gings in letzter Zeit nur noch darum, das man nicht einfach mit dem Schluss weiterrechnen kann, sondern Äquivalenz nötig ist.

    Bye, TGGC

    Siehe hier: http://mo.mathematik.uni-stuttgart.de/kurse/kurs7/seite5.html



  • Kapierts doch einfach. Ihr liegt falsch. Nur Weil A => B gilt lang nicht P(A) == P(B).

    Bye, TGGC



  • Kann es sein, dass du nur auf Fragen antwortest, die dir in den Kram passen? Insbesondere sind noch eine Reihe Fragen zu deiner Lösung offen, aber trotzdem klammerst du dich einzig an die Möglichkeit unsere Lösung als inkorrekt zu überführen. Selbst wenn dir das gelingen sollte, folgt daraus nicht automatisch, dass deine Lösung korrekt ist. 😉
    Insofern wäre es schon nett, wenn du die eine oder andere Frage noch beantworten könntest.

    Zu deinem letzten Beitrag:

    TGGC schrieb:

    Kapierts doch einfach. Ihr liegt falsch. Nur Weil A => B gilt lang nicht P(A) == P(B).
    Bye, TGGC

    Mmhh, mal schauen ob ich's verstanden habe. Wenn ich also aus
    den 3 Aussagen:

    (1) "Wenn ein Kind am Fenster steht, so ist sein Geschlecht mit einer Chance von 50% männlich"
    (2) "am Fenster stehen und das Geschlecht unabhängig sind "
    und
    (3) "wir eine Geschlechterverteilung von 1:1 annehmen"

    schließen würde:
    (4) "Daher gilt P( B )= 0.5.",

    dürfte ich diesen Schluss nicht benutzen, weil zwar (1)(2)(3)(4)(1) \wedge (2) \wedge (3) \Rightarrow (4) gilt aber nicht (4)(1)(2)(3)(4) \Rightarrow (1) \wedge (2) \wedge (3) , weil ich aus der Tatsache, dass "P( B )= 0.5" ist wohl kaum auf die zuvor genannten Eigenschaften zurückschließen könnte. Eine Lösung die diesen Schluss benutzt, wäre also falsch, weil keine Äquvalenz gilt? 😕

    (Darüber hinaus ist dieser von dir benutzte Schluss möglicherweise falsch, doch dazu später.)

    Um sicher zu gehen, noch ein zweites Beispiel. Stellen wir uns vor, ich schließe aus
    (1) "Die Wahrscheinlichkeit, das als erstes Kind ein Junge geboren wird, ist 0.5. Für das zweite Kind ebenso."
    und
    (2) "Da die Geburten unabhängig voneinander sind,"

    dass gilt (3) "ergibt sich die Wahrscheinlichkeit, das beides eintritt, durch Multiplikation. Also P( A geschnitten 😎 = 0.5 * 0.5 = 0.25" .

    Obwohl gilt (1)(2)(3)(1) \wedge (2) \Rightarrow (3) darf ich diesen Schluss nicht benutzen, weil nicht gilt (3)(1)(2)(3) \Rightarrow (1) \wedge (2) , denn für (3) kennst du ja P(AB)P(A \cap 😎 nicht, wenn du diesen Schluss nicht benutzt hast. (Du durftest P(AB)P(A \cap 😎 nur per Multiplikation berechnen, weil du o.g. Schluss benutzt hast. Ohne ihn kennst du P(AB)P(A \cap 😎 nicht. Aber davon abgesehen, selbst wenn du P(AB)P(A \cap 😎 kennen würdest, dürftest du daraus nicht auf die Gleichwahrscheinlichkeit des Geschlechts und die Unabhängigkeit zwischen den Geburten schließen.)
    Deiner Meinung nach wäre also jede Lösung die diesen Schluss benutzt falsch, weil keine Äquivalenz gilt? 😕

    Bist du da wirklich sicher? Denn andererseits ist es mir schon recht häufig begegnet, dass aus Eigenschaften, die für eine Menge A gelten, geschlossen wurde, dass diese auch für alle Mengen BAB \subseteq A gelten, obwohl es sich hier nicht um einen Äquvalenzrelation handelt. Insbesondere wird dabei nicht gefordert, dass P(A) = P(B).

    Aber vielleicht kannst du mir ja nochmal erklären, wozu es Implikationen gibt, wenn ich sie nirgends verwenden darf.

    Nun noch einige Fragen zu deiner Lösung.

    TGGC schrieb:

    Zunächst zu P(B):
    Wenn ein Kind am Fenster steht, so ist sein Geschlecht mit einer Chance von 50% männlich, da am Fenster stehen und das Geschlecht unabhängig sind und wir eine Geschlechterverteilung von 1:1 annehmen. Daher gilt P( B )= 0.5.

    Zunächst hast du immer noch nicht erklärt, woher du weisst, dass "am Fenster stehen und das Geschlecht unabhängig sind". Das steht nicht in der Aufgabe und ist insbesondere auch nicht aus der Alltagserfahrung abzuleiten (vielmehr spricht letztere dafür, dass Geschlecht und "am Fenster stehen" nicht unabhängig sind).

    Aber nehmen wir doch mal an, dass diese Annahme tatsächlich stimmt. Du berechnest hier die Wahrscheinlichkeit:
    B= "Kind, welches am Fenster steht, ist ein Junge". Ich folge dir in den Annahmen, dass die Variable Geschlecht die Ausprägungen {M, J} hat und P(M) = P(J) = 0.5 ist. Nun erwähnst du zwar die Variable "am Fenster stehen", nennst aber weder die möglichen Ausprägungen, noch deren Wahrscheinlichkeit. Nun, eine Möglichkeit wäre: entweder man steht am Fenster ("F"), oder man steht nicht am Fenster ("¬\neg F") = {F, ¬\neg F}. Ohne die Wahrscheinlichkeiten P(F) und P(¬\negF) zu kennen, können wir davon ausgehen, dass P(F) + P(¬\negF)=1, weil es sich um komplementäre Ereignisse handelt. (Im Gegensatz zu deiner Mengendarstellung, in der du "Kind 1 am Fenster" und "Kind 2 am Fenster" als Komplementärereignisse verkaufst, obwohl davon nichts in der Aufgabe steht.)

    Du suchst die Wahrscheinlichkeit, dass ein Junge am Fenster steht, musst also das Kreuzprodukt

    {M,J}×{F,¬F}={{M,F},{M,¬F},{J,F},{J,¬F}}\{M, J\} \times \{F, \neg F\} = \{\{M, F\}, \{M, \neg F\}, \{J, F\}, \{J, \neg F\}\}

    bilden. (die Ereignisse in Alltagssprache: {"Kind ist ein Mädchen und steht am Fenster", "Kind ist ein Mädchen und steht nicht am Fenster", "Kind ist ein Junge und steht am Fenster", "Kind ist ein Junge und steht nicht am Fenster"}). Insbesondere dürfte gelten:

    P({M,F})+P({M,¬F})+P({J,F})+P({J,¬F})=1P(\{M, F\}) + P(\{M, \neg F\}) + P(\{J, F\}) + P(\{J, \neg F\}) = 1

    Nun hast du berechnet, dass P(B) = P("Junge am Fenster") = P({J,F}\{J, F\}) = 0.5.

    Kannst du kurz erklären, warum P({J,F})=P({M,F})+P({M,¬F})+P({J,¬F}=0.5P(\{J, F\}) = P(\{M, F\}) + P(\{M, \neg F\}) + P(\{J, \neg F\} = 0.5? Wegen der Annahme von Unabhängigkeit zwischen Geschlecht und "am Fenster stehen" dürfte aus diesem Ergebnis folgen

    P(P({J,F})=P(J)P(F)0.5=0.5P(F)P(F)=1P(¬F)=0P(\{J, F\}) = P(J) * P(F) \Leftrightarrow 0.5 = 0.5 * P(F) \Leftrightarrow P(F) = 1 \Leftrightarrow P(\neg F) = 0

    was dazu führt, dass

    P({M,F})=P(M)P(F)=0.51=0.5P(\{M, F\}) = P(M) * P(F) = 0.5 * 1 = 0.5 und P({M,¬F})=P({J,¬F}=0P(\{M, \neg F\}) = P(\{J, \neg F\} = 0

    In Alltagssprache heisst dass, dass Jungen als auch Mädchen nur am Fenster stehen - den ganzen Tag und die ganze Nacht! 😮 😉

    Davon abgesehen ist der Raum
    {M,J}×{F,¬F}={{M,F},{M,¬F},{J,F},{J,¬F}}\{M, J\} \times \{F, \neg F\} = \{\{M, F\}, \{M, \neg F\}, \{J, F\}, \{J, \neg F\}\} dann auch kein Laplace-Raum und damit dürfte die Ergebnismenge für deine Lösung auch keiner sein. Denn von hieraus ist deine Ergebnismenge recht einfach zu konstruieren: die Familie hat 2 Kinder, die beide am Fenster stehen können oder auch nicht, also die Menge:

    ({M,J}×{F,¬F})×({M,J}×{F,¬F})\left(\{M, J\} \times \{F, \neg F\}\right) \times ( \{M, J\} \times \{F, \neg F\}).

    Diese Menge besteht aus 16 4-Tupeln und dürfte wegen der oben errechneten Wahrscheinlichkeit P(F) = 1 nicht Laplace sein; man kann also die Aufgabe nicht mehr durch Auszählen lösen.

    Übrigens halte ich es für absolut realistisch, dass P(F)p(¬F)P(F) \neq p(\neg F), nur dürften die Wahrscheinlichkeiten eher genau andersrum als von TGGC "hergeleitet", denn P(F) dürfte im Vergleich zu P(¬\neg F) sehr (!) klein sein - wie oft am Tag steht man schon am Fenster. Hinzu kommen mehrere Stunden Schlaf, an denen wir auch nicht am Fenster stehen (hoffe ich mal :D). Insofern ist die Annahme einer Gleichverteilung von "am Fenster stehen" und "nicht am Fenster stehen" eher unrealistisch und wäre wohl auch nicht durch die "Regel vom unzureichenden Grund" zu rechtfertigen. Aber ohne diese Gleichverteilung ist der Lösungsweg von TGGC weder durch Auszählen bestimmbar, noch berechenbar.

    edit
    Typos.
    ~edit 2~
    More typos.



  • Na TGGC, was ist? Argumente nicht neu genug oder aufgegeben?



  • dooya schrieb:

    B= "Kind, welches am Fenster steht, ist ein Junge". Ich folge dir in den Annahmen, dass die Variable Geschlecht die Ausprägungen {M, J} hat und P(M) = P(J) = 0.5 ist. Nun erwähnst du zwar die Variable "am Fenster stehen", nennst aber weder die möglichen Ausprägungen, noch deren Wahrscheinlichkeit.

    wenn du mal einen moment deinen mathematischen irrwald beseite ließest, fiele dir auf, daß TGGC genau wie ich die annahme macht, daß beide geschlechter gleichwahrscheinlich am fenster stehen. jetzt brauchst du nur noch alle möglichen geschwisterkombinationen durchzugehen, es kommt 1/2 raus. ich kanns dir auch gerne nochmal vorführen:

    JM: 1/2 junge, 1/2 mädchen
    MJ: 1/2 junge, 1/2 mädchen
    JJ: 1 junge

    macht zusammen 1 mädchen und zwei jungen, die durchschnittlich am fenster stehen.
    jetzt siehst du: am fenster steht ein junge.
    also sehen wir uns die zwei jungen an und merken: aha, 1 junge entfällt auf die kombination JJ, der andere auf ide kombinationen JM und MJ.



  • scrub schrieb:

    dooya schrieb:

    B= "Kind, welches am Fenster steht, ist ein Junge". Ich folge dir in den Annahmen, dass die Variable Geschlecht die Ausprägungen {M, J} hat und P(M) = P(J) = 0.5 ist. Nun erwähnst du zwar die Variable "am Fenster stehen", nennst aber weder die möglichen Ausprägungen, noch deren Wahrscheinlichkeit.

    wenn du mal einen moment deinen mathematischen irrwald beseite ließest, fiele dir auf, daß TGGC genau wie ich die annahme macht, daß beide geschlechter gleichwahrscheinlich am fenster stehen. [...]

    Habe ich das irgendwo beweifelt? Natürlich macht TGGC diese Annahme und in meinem letzten Beitrag habe ich u.a. versucht zu erläutern, warum ich der Meinung bin dass diese Annahme (1) unzulässig hergeleitet und (2) unplausibel ist. Aber selbst wenn man in diesem Punkt nicht so konservativ wäre und diese Annahme gelten liesse -und auch das habe ich schon in meinem letzten Beitrag versucht zu demonstieren- gibt es noch wesentliche Punkte in TGGCs Lösung die unplausibel oder inkorrekt erscheinen.

    Aber wo du gerade dabei bist, erkläre doch mal kurz, woraus du ableiten kannst, dass:

    daß beide geschlechter gleichwahrscheinlich am fenster stehen.

    Steht das irgendwo in der Aufgabe?

    scrub schrieb:

    dooya schrieb:

    B= "Kind, welches am Fenster steht, ist ein Junge". Ich folge dir in den Annahmen, dass die Variable Geschlecht die Ausprägungen {M, J} hat und P(M) = P(J) = 0.5 ist. Nun erwähnst du zwar die Variable "am Fenster stehen", nennst aber weder die möglichen Ausprägungen, noch deren Wahrscheinlichkeit.

    wenn du mal einen moment deinen mathematischen irrwald beseite ließest, fiele dir auf, daß TGGC genau wie ich die annahme macht, daß beide geschlechter gleichwahrscheinlich am fenster stehen. jetzt brauchst du nur noch alle möglichen geschwisterkombinationen durchzugehen, es kommt 1/2 raus. ich kanns dir auch gerne nochmal vorführen:

    JM: 1/2 junge, 1/2 mädchen
    MJ: 1/2 junge, 1/2 mädchen
    JJ: 1 junge

    macht zusammen 1 mädchen und zwei jungen, die durchschnittlich am fenster stehen.
    jetzt siehst du: am fenster steht ein junge.
    also sehen wir uns die zwei jungen an und merken: aha, 1 junge entfällt auf die kombination JJ, der andere auf ide kombinationen JM und MJ.

    Ach so, jetzt versteh ich das: Wenn eine Familie 2 Kinder hat, sehe ich sofort: das

    macht zusammen 1 mädchen und zwei jungen, die durchschnittlich am fenster stehen.

    Du hast Recht, das kann ja nichts werden mit meinem mathematischen Irrwald. Nie wäre ich damit darauf gekommen, dass wenn ich sehe:

    am fenster steht ein junge

    mir nur sagen müsste

    sehen wir uns die zwei jungen an

    und dann sofort auf die Lösung käme.

    Werd's mir merken und in Zukunft auf den mathematischen Irrwald verzichten, insbesondere wenn es um mathematische Rätsel in einem Forum mit dem Namen "Mathematik" geht. 😉

    (Diese ironische Betrachtungsweise ist nicht als persönlicher Angriff intendiert; sie soll nur aufzeigen, welchen "Irrwald" man auch in deinem Beitrag finden kann, wenn man den möchte. Solltest du Fehler in meinen mathematischen Ausführungen gefunden haben, würde ich mich über einen entsprechenden Hinweis freuen - sie aber pauschal als "mathematischen Irrwald" abzutun empfinde ich als wenig konstruktiv und unangemessen.)

    Nein, mal im Ernst, es ist mir schon klar, dass du für deine Lösung eine Mengendarstellung herleiten kannst. TGGC hat dies jedoch in der Textversion seiner Lösung versäumt und dadurch gelingen ihm einige "Rechnereien" die nicht zwingend richtig sind. Die Mengendarstellung die TGGC angeboten hat stimmt jedoch mit der Textversion seiner Lösung nicht überein, ist also zum besseren Verständnis der Textversion nicht zu gebrauchen. Übrigens stimmt TGGCs Mengendarstellung -abgesehen von den letztlich resultierenden Wahrscheinlichkeiten- nicht mit deiner überein.



  • dooya schrieb:

    Denn andererseits ist es mir schon recht häufig begegnet, dass aus Eigenschaften, die für eine Menge A gelten, geschlossen wurde, dass diese auch für alle Mengen BAB \subseteq A gelten, obwohl es sich hier nicht um einen Äquvalenzrelation handelt.

    Es ist doch aber wohl einfach einzusehen, das dies gerade für die Wahrscheinlichkeiten nicht gilt. Wenn B weniger Elemente als A hat, so ist sie einfach unwahrscheinlicher.

    Und du solltest mal nicht über die Wahrscheinlichkeit, dass ein Kind am Fenster erscheint grübeln, sondern das ein Junge erscheint unter der Voraussetzung das ein Kind am Fenster ist. Die Fälle ohne Kind am Fenster sind ohnehin uninteressant.

    Bye, TGGC



  • TGGC|_work schrieb:

    dooya schrieb:

    Denn andererseits ist es mir schon recht häufig begegnet, dass aus Eigenschaften, die für eine Menge A gelten, geschlossen wurde, dass diese auch für alle Mengen BAB \subseteq A gelten, obwohl es sich hier nicht um einen Äquvalenzrelation handelt.

    Es ist doch aber wohl einfach einzusehen, das dies gerade für die Wahrscheinlichkeiten nicht gilt. Wenn B weniger Elemente als A hat, so ist sie einfach unwahrscheinlicher.

    Das hatten wir hier schon mal im Thread, damals habe ich behauptet, dass ein und die selbe Menge immer die gleiche Wahrscheinlichkeit haben muss und du konntest mir zeigen, dass dies nicht zutrifft. Ich habe meine Fehleinschätzung damals eingestanden.

    Die Anzahl der Elemente in einer Menge dürfte nur dann in direkter Beziehung zur Wahrscheinlichkeit stehen, wenn beide sich auf die gleiche Grundgesammtheit beziehen, d.h. sie keine bedingten Wahrscheinlichkeiten sind (Ausnahme: sie sind auf das gleiche Ereignis bedingt).

    Aber in meinem Beitrag habe ich dir 2 Stellen gezeigt, wo auch du Schlüsse verwendest aber auch keine Äquivalenz voraussetzen kannst. Warum darfst du das dort jeweils? (Es handelt sich übrigens in beiden Fällen um Wahrscheinlichkeiten.)

    TGGC|_work schrieb:

    Und du solltest mal nicht über die Wahrscheinlichkeit, dass ein Kind am Fenster erscheint grübeln, sondern das ein Junge erscheint unter der Voraussetzung das ein Kind am Fenster ist. Die Fälle ohne Kind am Fenster sind ohnehin uninteressant.

    Bye, TGGC

    Aus der von mir vorgeschlagenen Lösung für die Aufgabe geht ja deutlich hervor, dass ich das Fenster als überhaupt nicht relevant erachte, sondern nur die Information "Es gibt einen Jungen" verwende. Die Fenster wurden von dir ins Spiel gebracht und mir ist halt aufgefallen, dass du in deinem Lösungsweg (Textversion), als auch in der Mengendarstellung die Ausprägungen der Variable "am Fenster stehen" in meinen Augen gar nicht oder nicht korrekt definierst. In der Textversion kommst du auf P(Junge am Fenster) = P(Mädchen am Fenster) = 0.5, die Variable "am Fenster stehen" ist also de facto zur Konstanten degradiert worden. Wenn es aber für "am Fenster stehen" nur eine Ausprägung gibt, brauchst du sie in der Lösung nicht zu berücksichtigen, weil sie keinen Einfluß auf die Wahrscheinlichkeit anderer Ereignisse haben kann, wenn sie sich nie ändert (genau dies habe ich in meiner Lösung getan).

    In deiner Mengendarstellung hat "am Fenster stehen" nun auf einmal 2 Ausprägungen: "Kind 1 am Fenster" und "Kind 2 am Fenster" und diese werden von dir behandelt, als wären (1) es komplementäre Ereignisse und insbesondere (2) gleichwahrscheinlich. Beides trifft in meinen Augen nicht zu. Zu (1) habe ich argumentiert, dass nur die Ereignisse "Kind 1 am Fenster" und "Kind 1 nicht am Fenster" komplementär sind, ebenso gleichlautende Ereignisse für das zweite Kind und somit eine korrekte Lösungsmenge die Ereignisse "beide Kinder am Fenster" und "kein Kind am Fenster" berücksichtigen muss (Kreuzmenge aus {"Kind 1 am Fenster", "Kind 1 nicht am Fenster"} ×\times {"Kind 2 am Fenster", "Kind 2 nicht am Fenster"}. Aus (2) folgt dann in meinen Augen lediglich, dass die so konstruierte Ergebnismenge kein Laplace-Raum sein kann.

    Ausserdem hast du (trotz mehrfacher Nachfrage) immer noch nicht begründet, warum Geschlecht und "am Fenster stehen" unabhängig sind.

    Zusammenfassend, ich habe das Fenster nicht in den den Lösungsweg eingebracht, das warst du und in meinen Augen bist du dabei nicht korrekt vorgegangen. Daher habe ich dich schon mehrfach gebeten, zum einen deine Mengendarstellung und deinen Lösungsweg (Textversion) aufeinander abzustimmen und zum anderen eine mathematische Notation für die Mengendarstellung anzugeben. Anhand einer solchen wären meine Fragen viel leichter zu beantworten.

    Noch was anderes:

    TGGC|_work schrieb:

    Und du solltest mal nicht über die Wahrscheinlichkeit, dass ein Kind am Fenster erscheint grübeln, sondern das ein Junge erscheint unter der Voraussetzung das ein Kind am Fenster ist. Die Fälle ohne Kind am Fenster sind ohnehin uninteressant.[...]

    In der Aufgabenstellung wird nicht von der Wahrscheinlichkeit, dass "ein Junge erscheint unter der Voraussetzung das ein Kind am Fenster ist" gesprochen, sondern die dort eingeführte Voraussetzung ist, dass man "einen Jungen am Fenster stehen" sah. Warum betrachtest du also in deiner Lösung die Wahrscheinlichkeit, dass ein Mädchen am Fenster erschienen sein könnte - nach deiner Argumentation hier sind diese Fälle uninteressant. (Diese Einschätzung liegt übrigens meiner Aufgabenlösung zugrunde.)



  • dooya schrieb:

    scrub schrieb:

    dooya schrieb:

    B= "Kind, welches am Fenster steht, ist ein Junge". Ich folge dir in den Annahmen, dass die Variable Geschlecht die Ausprägungen {M, J} hat und P(M) = P(J) = 0.5 ist. Nun erwähnst du zwar die Variable "am Fenster stehen", nennst aber weder die möglichen Ausprägungen, noch deren Wahrscheinlichkeit.

    wenn du mal einen moment deinen mathematischen irrwald beseite ließest, fiele dir auf, daß TGGC genau wie ich die annahme macht, daß beide geschlechter gleichwahrscheinlich am fenster stehen. [...]

    Habe ich das irgendwo beweifelt? Natürlich macht TGGC diese Annahme und in meinem letzten Beitrag habe ich u.a. versucht zu erläutern, warum ich der Meinung bin dass diese Annahme (1) unzulässig hergeleitet und (2) unplausibel ist.

    sie ist nicht "unzulässig hergeleitet", sie wird einfach getroffen, während sie von anderen ainfach nicht gemacht wird, weil "der junge ja sxhon am fenster steht und man sich deswegen nicht überlegen muß, wie er dahingekommen ist". und wenn wir schon bei der geburtenwahrscheinlichkeit von gleichverteilung ausgehen, sollten wir es natürlich hier auch tun.
    wir können auch annehmen, daß mädchen mit wahrscheinlichkeit x am fenster stehen, dann kommt halt ein anderes ergebnis raus- das ändert aber an der grundsätzlich anderen herangehensweise nix.

    dooya schrieb:

    Aber wo du gerade dabei bist, erkläre doch mal kurz, woraus du ableiten kannst, dass:

    daß beide geschlechter gleichwahrscheinlich am fenster stehen.

    Steht das irgendwo in der Aufgabe?

    nein, es steht da nur, daß eines der kinder am fenster steht und junge ist. also mache ich eine annahme, mit welcher wahrscheinlichkeit ein junge am fenster steht (die müßte ich nicht machen, wenns in der aufgabe stünde).

    dooya schrieb:

    Werd's mir merken und in Zukunft auf den mathematischen Irrwald verzichten, insbesondere wenn es um mathematische Rätsel in einem Forum mit dem Namen "Mathematik" geht. 😉

    ne, du solltest es dir nur dann sparen, wenn es überflüssig ist- und das ist es hier.

    dooya schrieb:

    (Diese ironische Betrachtungsweise ist nicht als persönlicher Angriff intendiert; sie soll nur aufzeigen, welchen "Irrwald" man auch in deinem Beitrag finden kann, wenn man den möchte. Solltest du Fehler in meinen mathematischen Ausführungen gefunden haben, würde ich mich über einen entsprechenden Hinweis freuen - sie aber pauschal als "mathematischen Irrwald" abzutun empfinde ich als wenig konstruktiv und unangemessen.)

    ich finde einen fehler, und der ist das ergebnis. den begriff "irrwald" habe ich verwendet, weil mir deine auführungen unnötig kompliziert erscheinen. ich wollte damit nicht sagen, daß ich mir total sicher bin, daß ein fehler enthalten ist, weil ich diesen erkannt hätte- es muß aber einer vorhanden sein, denn das ergebnis deiner ausführungen ist falsch.

    was ich gemacht habe und von dir ins lächerliche gezogen wurde, ist die elementarste, ursprünglichste, grundschülerischste, simpelste art und weise, an ein solches problem ranzugehen: man spielt einfach alle fälle einmal durch, zählt am ende zusammen und hat das richtige ergebnis.

    Nein, mal im Ernst, es ist mir schon klar, dass du für deine Lösung eine Mengendarstellung herleiten kannst. TGGC hat dies jedoch in der Textversion seiner Lösung versäumt und dadurch gelingen ihm einige "Rechnereien" die nicht zwingend richtig sind. Die Mengendarstellung die TGGC angeboten hat stimmt jedoch mit der Textversion seiner Lösung nicht überein, ist also zum besseren Verständnis der Textversion nicht zu gebrauchen. Übrigens stimmt TGGCs Mengendarstellung -abgesehen von den letztlich resultierenden Wahrscheinlichkeiten- nicht mit deiner überein.[/quote]



  • scrub schrieb:

    dooya schrieb:

    scrub schrieb:

    dooya schrieb:

    B= "Kind, welches am Fenster steht, ist ein Junge". Ich folge dir in den Annahmen, dass die Variable Geschlecht die Ausprägungen {M, J} hat und P(M) = P(J) = 0.5 ist. Nun erwähnst du zwar die Variable "am Fenster stehen", nennst aber weder die möglichen Ausprägungen, noch deren Wahrscheinlichkeit.

    wenn du mal einen moment deinen mathematischen irrwald beseite ließest, fiele dir auf, daß TGGC genau wie ich die annahme macht, daß beide geschlechter gleichwahrscheinlich am fenster stehen. [...]

    Habe ich das irgendwo beweifelt? Natürlich macht TGGC diese Annahme und in meinem letzten Beitrag habe ich u.a. versucht zu erläutern, warum ich der Meinung bin dass diese Annahme (1) unzulässig hergeleitet und (2) unplausibel ist.

    sie ist nicht "unzulässig hergeleitet", sie wird einfach getroffen, während sie von anderen ainfach nicht gemacht wird, weil "der junge ja sxhon am fenster steht und man sich deswegen nicht überlegen muß, wie er dahingekommen ist". [...]

    Genau das nimmt TGGC nicht an, sonst würde er nicht über die Geschlechterverteilung am Fenster spekulieren müssen. Wenn du tatsächlich annimmst, dass der Junge schon am Fenster steht, brauchst du nicht darüber nachdenken, wie wahrscheinlich dies ist (kein " es hätte ja auch ein Mädchen am Fenster stehen können"), sondern nur die Ereignisse zählen, bei denen es prinzipiell möglich war, also {M, J}, {J, M}, und {J, J}. (Genau dies habe ich in meiner Lösung getan.) Hierbei darf man allerdings nicht eben mal ein Ereignis doppelt zählen (siehe auch Ende dieses Beitrages).

    Im Übrigen verwundert mich, mit welcher Berechtigung man Annahmen "einfach treffen kann". Eine gewisse Plausibilität sollte man durch entsprechende Herleitungen oder Begründungen doch schon demonstrieren, oder?

    scrub schrieb:

    [...]
    und wenn wir schon bei der geburtenwahrscheinlichkeit von gleichverteilung ausgehen, sollten wir es natürlich hier auch tun.[...]

    Für diese Annahme spricht in meinen Augen recht wenig, weil die Gleichverteilung der Geburten von Jungen und Mädchen in keiner Weise vergleichbar ist, mit der Wahrscheinlichkeit am Fenster zu stehen. Die Tatsache, dass Jungen und Mädchen mit annähernd gleicher Wahrscheinlichkeit geboren werden ist kein Zufall, sondern auf unseren Fortpflanzungsmechanismus zurückzuführen. Dieser hat jedoch keinen mir bekannten Einfluss auf die Häufigkeit, mit der Menschen am Fenster stehen. Die Tätigkeit " am Fenster stehen" wird jedoch von vielen anderen Verhaltensweisen und Gewohnheiten beeinflußt, z.B. wieviel Zeit verbringe ich in der Schule, wie verbringe ich meine Freizeit, bin ich oft zu Hause oder eher wenig, gehe ich einer geregelten Arbeit nach oder nicht usw. In allen diesen Verhaltensweisen sind signifikante Geschlechterunterschiede zu vermuten und es ist anzunehmen, dass diese sich auch auf die Häufigkeit mit der man am Fenster steht auswirkt. (Bspw. ist jemand der viel Zeit im Freien verbringt tendenziell seltener am Fenster zu sehen, als jemand der nie das Haus verlässt.

    Ich sehe also keinerlei Anlass hier von einer Gleichverteilung auszugehen.

    Wie auch immer, es ist hier müssig über die genaue Wahrscheinlichkeitsverteilung nicht spekulieren, denn für die Aufgabenlösung braucht es schlicht nicht.

    scrub schrieb:

    [...]
    wir können auch annehmen, daß mädchen mit wahrscheinlichkeit x am fenster stehen, dann kommt halt ein anderes ergebnis raus- das ändert aber an der grundsätzlich anderen herangehensweise nix.[...]

    Aber genau ist doch das Problem: wenn man eine andere Wahrscheinlichkeit einsetzt, dürfte TGGC auf eine andere Lösung kommen. Da bislang keine überzeugenden Gründe für die Annahme einer Gleichverteilung vorgebracht wurden, spricht dies nicht für den Lösungsweg von TGGC.

    scrub schrieb:

    [...]

    dooya schrieb:

    Aber wo du gerade dabei bist, erkläre doch mal kurz, woraus du ableiten kannst, dass:

    daß beide geschlechter gleichwahrscheinlich am fenster stehen.

    Steht das irgendwo in der Aufgabe?

    nein, es steht da nur, daß eines der kinder am fenster steht und junge ist. also mache ich eine annahme, mit welcher wahrscheinlichkeit ein junge am fenster steht (die müßte ich nicht machen, wenns in der aufgabe stünde).[...]

    Wenn diese Verteilung nicht als allgemein bekannt und durch empirische Forschung bestätigt vorausgesetzt werden kann (wie z.B. die gleiche Häufigkeit von Jungen und Mädchen), nicht in der Aufgabenstellung steht und auch nicht auf anderen Wegen hergeleitet oder begründet werden kann, sollte man wohl eher auf sie verzichten. Sie einfach "anzunehmen" ist in meinen Augen keine sonderlich gute Evidenz für die Korrektheit eines Lösungsweges.

    Aber wie schon gesagt, selbst wenn man die Annahme der Gleichverteilung von am Fenster stehenden Jungen und Mädchen zulassen würde, finden sich andere schwerwiegende Unklarheiten in TGGCs Lösung (siehe meine vorherigen Beiträge).

    scrub schrieb:

    [...]

    dooya schrieb:

    Werd's mir merken und in Zukunft auf den mathematischen Irrwald verzichten, insbesondere wenn es um mathematische Rätsel in einem Forum mit dem Namen "Mathematik" geht. 😉

    ne, du solltest es dir nur dann sparen, wenn es überflüssig ist- und das ist es hier.

    Ich bin dieser Meinung nicht, denn wo bietet sich eine mathematische Notation eher an, als für mathematische Aufgaben? Diese Notation ist wesentlich eindeutiger zu lesen als unsere Alltagssprache und folglich würde es wesentlich weniger Missverständnisse geben. Das Gros dieser Diskussion dreht sich um sprachliche Ungenauigkeiten und verschiedene Interpretation der Aufgabenstellung. Eben diese lassen sich durch eine eindeutige Notation -und eine solche ist die mathematische- vermeiden.

    scrub schrieb:

    [...]

    dooya schrieb:

    (Diese ironische Betrachtungsweise ist nicht als persönlicher Angriff intendiert; sie soll nur aufzeigen, welchen "Irrwald" man auch in deinem Beitrag finden kann, wenn man den möchte. Solltest du Fehler in meinen mathematischen Ausführungen gefunden haben, würde ich mich über einen entsprechenden Hinweis freuen - sie aber pauschal als "mathematischen Irrwald" abzutun empfinde ich als wenig konstruktiv und unangemessen.)

    ich finde einen fehler, und der ist das ergebnis. den begriff "irrwald" habe ich verwendet, weil mir deine auführungen unnötig kompliziert erscheinen. ich wollte damit nicht sagen, daß ich mir total sicher bin, daß ein fehler enthalten ist, weil ich diesen erkannt hätte- es muß aber einer vorhanden sein, denn das ergebnis deiner ausführungen ist falsch.[...]

    Auch wenn du dir sehr sicher bist, dass ein Fehler in meiner Lösung steckt, kannst du sie nicht falsifizieren, solange du ihn nicht nachweisen kannst. Nur weil du ein anderes Ergebnis errechnest, schränkt dies nicht die Plausibilität meiner Lösung ein. Aber mit genau diesem Problem haben beide Seiten zu kämpfen. Nur wenn du einen Fehler findest und überzeugend darlegen kannst, warum es sich um eine Inkorrektheit handelt, kannst du den jeweils anderen Lösungsweg als falsch überführen.

    scrub schrieb:

    [...]
    was ich gemacht habe und von dir ins lächerliche gezogen wurde, ist die elementarste, ursprünglichste, grundschülerischste, simpelste art und weise, an ein solches problem ranzugehen: man spielt einfach alle fälle einmal durch, zählt am ende zusammen und hat das richtige ergebnis.
    [...]

    Ich habe nicht deinen Lösungsweg ins Lächerliche ziehen wollen, sondern nur versucht zu zeigen, dass es leicht ist, die Ausführungen eines anderen als "Irrwald" zu bezeichnen. Natürlich ist es korrekt, wenn du versuchst die Wahrscheinlichkeiten durch auszählen zu bestimmen (habe ich in meiner Lösung auch getan). Sobald du allerdings willkürlich die Wahrscheinlichkeiten der Einzelereignisse veränderst (z.B. {J, J} doppelt zählst) veränderst du die Eigenschaften der betrachteten Mengen. Sobald du annimmst, dass die Ereignisse {M, J}, {J, M} und {J, J} nicht die gleiche Wahrscheinlichkeit haben, handelt es sich nicht mehr um einen Laplace-Raum und du darfst die Wahrscheinlichkeiten nicht mehr durch auszählen bestimmen, denn das ist nur in Laplace-Räumen gestattet.



  • dooya schrieb:

    Natürlich ist es korrekt, wenn du versuchst die Wahrscheinlichkeiten durch auszählen zu bestimmen (habe ich in meiner Lösung auch getan). Sobald du allerdings willkürlich die Wahrscheinlichkeiten der Einzelereignisse veränderst (z.B. {J, J} doppelt zählst) veränderst du die Eigenschaften der betrachteten Mengen. Sobald du annimmst, dass die Ereignisse {M, J}, {J, M} und {J, J} nicht die gleiche Wahrscheinlichkeit haben, handelt es sich nicht mehr um einen Laplace-Raum und du darfst die Wahrscheinlichkeiten nicht mehr durch auszählen bestimmen, denn das ist nur in Laplace-Räumen gestattet.

    es gibt zu dem "doppelt zählen" zwei arten, das zu sehen.

    1. man zählt nicht doppelt- dann gibt es gleichwahrscheinlich JM, MJ und JJ. jetzt lassen wir jeden dieser fälle mit 1/3 eintreten.

    dann zählen wir die durchschnittlichen kinder, die am fenster stehen. dazu müssen wir eine annahme machen; ich und TGGC haben naheliegenderweise 1/2 gewählt. wir können auch 5/6 wählen oder 13/662, die sichtweise ist dieselbe.

    jetzt zählen wir bei MJ einen halben jungen, ein halbes mädchen. mal 1/3 macht jeweils 1/6.
    selbiges ergibt sich bei JM.
    für JJ ergibt sich 1/3, weil auf jeden fall ein junge am fenster steht.

    ich habe JJ jetzt nicht doppelt gezählt, sondern einfach die tatsache, daß es bei JJ doppelt so wahrscheinlich ist, daß das andere kind eine junge ist, wenn das am fenster auch eins ist.

    also ergeben sich im ergebnis (gleiche wahrscheinlichkeit für MJ, JM und JJ, also treten beim durchzählen alle gleich oft auf, also hier einmal): 2/3 jungen und 1/3 mädchen.

    jetzt sehen wir: aha, ein junge steht am fenster. also sehen wir uns mal die 2/3 aller fälle an, in denen ein jugne am fenster steht.

    davon entfällt 1/3 junge (also die hälfte aller jungen) auf die kombination JJ, die anderen 1/3 jungen (also die andere hälfte) auf MJ und JM.

    also ist in der hälfte aller fälle, in denen ein junge am fenster steht, das andere kind ein mädchen; in der anderen hälfte aller fälle ist es auch ein junge.

    selbstverständlich erhält man andere ergebnisse, wenn man eine andere wahrscheinlichkeit fürs "am-fenster-stehen" wählt. aber die herangehensweise ist dieselbe.

    1. man zählt wirklich doppelt. mit welcher begründung? ganz einfach: da die aufgabenstellung von einem jungen redet, der am fenster steht, steht das andere kind nicht am fenster (sonst wäre die aufgabe trivial mit der antwort: "scheiß auf die wahrscheinlichkeit, ich seh ja, was das andere kind ist!").
      mit anderen worten: wir unterscheiden einfach zwischen beiden kindern. das führt uns bei generell zwei kindern zu den möglichen paaren MM, MM, MJ, JM, JJ, JJ. jetzt haben wir als information "eins der kinder ist ein junge". von den kombinationen mit einem jungen hat die hälfte einen zweiten jungen, die andere hälfte ein mädchen. ergebnis 1/2.

    an dieser stelle will ich noch mal klarstellen, wo meiner meinung nach dein fehler liegt: du schmeißt einen teil der information einfach weg. die aussagen sind eben nicht äquivalent, also auch nicht austauschbar, und du tauschst sei einfach aus.

    wir können auch noch eine dritte variante ins spiel bringen:

    wir übersetzen die aufgabenstellung in folgendes szenario: kind steht am fenster -> kind wurde gerade geboren, anderes kind -> wird gleich geboren.
    jetzt sag ich dir, das schon geborene kind ist ein junge. mit welcher wahrscheinlichkeit ist das andere ein mädchen?
    ist deine antwort hier 2/3?



  • scrub schrieb:

    wir unterscheiden einfach zwischen beiden kindern. das führt uns bei generell zwei kindern zu den möglichen paaren MM, MM, MJ, JM, JJ, JJ

    Nein. Es gibt nur vier Fälle!


Anmelden zum Antworten