Rätsel zur Wahrscheinlichkeitsberechnung
-
dooya schrieb:
scrub schrieb:
ich sage es gerne nochmal: das ist die perfekte gelegenheit für einen feldversuch. wir schicken einfach ein paar leute durch deutschland, lassen sie sämtliche fenster filmen und nachher ermitteln, welche von diesen zu häusern mit familien von zwei kindern gehören (oder umgekehrt). dann zählt man aus.
Auch mit dieser Methode wirst du auf die gleichen Interpretationschwierigkeiten treffen, denn ich wäre der Meinung, dass du laut der Aufgabenstellung nur die Fenster in denen ein Junge stand berücksichtigen sollte, während TGGC das vermutlich nicht so sieht.
Falsch. Wenn du nur die Familien mit Jungen am Fenster siehst, wirst du 50% Schwester und 50% Brüder treffen. So ist es.
Denk einfach drüber nach. Stell dir vor du hast 1000 Nachbarn, bei denen du beobachten kannst. Bei 100 steht nun grad ein Kind am Fenster. Wegen perfekter Verteilung 25 JJ; 25 MM und 50 JM/MJ. Bei den 25 J steht ein Junge am Fenster. Bei den 25 M ein Mädchen. Bei den 50 JM/MJ stehen 25 Jungen und 25 Mädchen. d.h. 50 Nachbarn mit Jungen am Fenster, davon 25 mit JJ. So ist es.
Bye, TGGC
-
Plotter schrieb:
Sehr gut, wir nähern uns an
Wenn wir nun den Jungen sehen, dann können wir davon ausgehen, dass die Familie, wenn sie wie beschrieben zwei Kinder hat, sicher nicht zwei Mädchen hat.
Es bleiben also noch die Möglichkeiten {JM, MJ, JJ}, wovon ursprüngliche jede zu 25% wahr sein konnte. Da eine unumstössliche Möglichkeit nun ausgefallen ist (schliesslich müssen wir auf 100% kommen), ist nun jede der Möglichkeiten bei 1/3. Ich gehe mal davon aus, dass nun hier ein Einspruch von dir kommt. Wenn nicht, auch gut, dann stimmst du mir zu.
wenn du der meinung bist, hier widerspräche ich, hast du nicht verstanden, was ich sagen wollte.
da wir ja den ganzen alten krempel hinter uns lassen wollen: ja, ich stimme dir zu.
-
Kannst du denn meiner bisherigen Erklärung nicht folgen? Tatsache ist die statistische Verteilung bei zwei Kindern. Und dass ein Junge beobachtet wurde. Ein Junge!!! Das ist gegeben. Oder hast du in der Schule mit dem Lehrer auch darüber diskutiert, ob nicht noch etwas zusätzliches eingetroffen sein könnte? Vielleicht, aber dann hat dein Lehrer dir hoffentlich nochmals deutlich die Aufgabe gezeigt.
-
Plotter schrieb:
Wenn wir nun den Jungen sehen, dann können wir davon ausgehen, dass die Familie, wenn sie wie beschrieben zwei Kinder hat, sicher nicht zwei Mädchen hat.
Es bleiben also noch die Möglichkeiten {JM, MJ, JJ}, wovon ursprüngliche jede zu 25% wahr sein konnte. Da eine unumstössliche Möglichkeit nun ausgefallen ist (schliesslich müssen wir auf 100% kommen), ist nun jede der Möglichkeiten bei 1/3. Ich gehe mal davon aus, dass nun hier ein Einspruch von dir kommt. Wenn nicht, auch gut, dann stimmst du mir zu.
Unsinn! Wenn du den Jungen am Fenster siehst, dann wird auch MJ und JM unwahrscheinlicher. Und wie sagt dooya dann immer so schön: Dannn geht es nicht durch abzählen. Eure primitive Denkweise ist einfach falsch, denn bei MJ und JM steht nicht _immer_ der Junge am Fenster, daher nur halb so wahrscheinlich wie JJ, wenn ich den Jungen am Fenster sehe. Ergo du falsch.
Bye, TGGC
-
Nein, denn nur weil du den Jungen siehst, sind die Familien statistisch gesehen noch immer genau gleich aufgebaut. Jede Kombination bleibt genau die gleiche, auch wenn am Fenster ein Junge gesehen wurde!!!
-
du kannst aber einen beliebigen J der beiden JJ sehen.
das geht außerdem auch aus meinem baum hervor...
MM JJ MJ JM | | /\ /\ | | / \ / \ M| J| M/ \J M/ \J steht am femster | | / \ / \ | | / \ / \ 1 1 0.5 0.5 0.5 0.5
-
Mir ist doch egal, welchen Jungen ich da sehe. Dort am Fenster steht ein Junge. Mehr wissen wir nicht und brauchen auch nicht zu wissen.
-
zähl doch oben einfach alle jungen, die am fenster stehen. dann guck, wie viele darauf auf JJ entfallen und wie viele nicht.
-
Plotter schrieb:
Nein, denn nur weil du den Jungen siehst, sind die Familien statistisch gesehen noch immer genau gleich aufgebaut. Jede Kombination bleibt genau die gleiche, auch wenn am Fenster ein Junge gesehen wurde!!!
Falsch. Dann würde ja auch MM gleich bleiben müssen. Weil Junge steht am Fenster abhängig von Anzahl Junge in der Familie ist, bleiben die Wahrscheinlichkeiten eben nihct gleich. Wenn A="Junge steht am Fenster", dann P("MM"|B)= 0 (wie korrekt erkannt) P("JM"|B)= 0.25; P("MJ"|B)= 0.25 und P("JJ"|B)= 0.5.
Analog dazu folgendes. Angenommen dir wird erzählt der neue Nachbar hätte gleich 10(!) Kinder. Alle haben das gleiche Geschlecht, bis auf eines. Nun siehst du zufällig einen Jungen. Würdest du eher darauf wetten, das du einen der 9 Jungen oder gerade den einzigen Jungen gesehen hast? (Nach deiner Argumentation ist ja JMMMMMMMMM und JJJJJJJJJM gleich wahrscheinlich.)
Bye, TGGC
-
Vergiss diesen Baum! In der Aufgabenstellung steht, dass dort ein Junge steht. Mit welcher Wahrscheinlichkeit dieser gegenüber einem Mädchen dort steht, ist vollkommen uninteressant.
-
JMMMMMMMMM und JJJJJJJJJM ist tatsächlich gleich wahrscheinlich. Schliesslich ist Junge oder Mädchen je 50%, also ist auch diese Kombination gleich gross (wie gross berechne ich jetzt nicht).
Dein grosser Denkfehler liegt bei diesem Jungen, der an dem Fenster steht. Er steht dort, egal mit welcher Wahrscheinlichkeit. Warum? Weil es so in der Aufgabenstellung steht. Bis hierher ist es eine Tatsache, an der es nicht herumzudiskutieren gibt.
-
Plotter schrieb:
Vergiss diesen Baum! In der Aufgabenstellung steht, dass dort ein Junge steht. Mit welcher Wahrscheinlichkeit dieser gegenüber einem Mädchen dort steht, ist vollkommen uninteressant.
Falsch! Das Ergebnis hängt wesentlich davon ab! Sagt man z.b. das Mädchen sich immer vordrängeln weil sie neugieriger sind, dann ist bei Junge am Fenster nur noch JJ möglich. Nimmt man das Gegenteil an kommt man zur verdrehten 2/3 Lösung. Weil nichts weiter in der Aufgabe darüber steht muss man aber 0.5 annehmen und kommt auf Ergebnis 0.5, fertig. So ist es.
Bye, TGGC
-
ne, ist es nicht- wir müssen uns nur auf eine wahrscheinlichkeit einigen, wer am fenster steht- naheliegenerweise nehme ich 1/2. wir können uns auch auf eine andere einigen.
aber dieser ganze klimbim mit "bedingte wahrscheinlichkeit" läuft auf einen solchen baum hinaus.
jetzt guckst du alle zweige an, bei denen J dransteht. (denn wir sehen ja einen jungen am fenster)
wie ist die wahrscheinlichkeit derjenigen zweige, die mit JM oder MJ beginnen? 1
wie ist die dessen, der mit JJ beginnt? 1
-
@ TGGC
Genau, weil sonst nichts weiteres in der Aufgabenstellung steht, gilt auch bei dieser durchschnittlichen Familie die statistische Verteilung, die hier ja schon akzeptiert wurde. Also steht einfach der Junge dort. Nichts mehr. Ob er nun seiner Schwester eins über den Kopf gehauen hat, um den Fensterplatz zu erobern ist egal. Er steht dort. Was dahinter lief wissen wir nicht und ist uninteressant. Also rechnen wir mit den Zahlen, die bewiesen sind.
-
Mich interessiert nicht, mit welcher Wahrscheinlichkeit der Junge am Fenster steht. Das steht in keiner Weise zur Debatte. Wichtig ist nur, dass von den Ursprünglich 4 Möglichkeiten (alle mit gleicher Wahrscheinlichkeit) nur noch drei zum tragen kommen, und zwei davon eben ein Mädchen als das zweite Kind zeigen.
Ich könnte nun noch argumentieren, im Schnitt gibt es gleich viele Mädchen wir Jungen. Wenn wir nun einen Jungen sehen, dann müsste, um den Schnitt wieder zu erreichen, das zweite Kind eher ein Mädchen sein. Ist weniger rational argumentiert, aber vielleicht verständlicher.
-
da ist er doch, der denkfehler.
du rechnest ja nicht für einen spezifischen fall, sondern allgemein. du machst also die annahme, daß der junge immer "seiner schwester eins über den kopf gehauen hat" oder was auch immer. du nimmst einfach an, daß der junge immer am fenster steht. und das ist eben falsch.
-
TGGC|_work schrieb:
dooya schrieb:
Warum wirst du unsachlich? Wenn du eines deiner Argument nicht vernünftig erklären möchtest, dann wirf es doch gar nicht erst ein.
Das folgt wie gesagt aus deinem eigenen Mist, daher kann ich es nicht erklären.
[...]Da du diese Folgerung (welche auch immer) abgeleitet hast, solltest du sie auch erklären. Woher soll ich wissen, was du aus meinen Aussagen folgerst.
TGGC|_work schrieb:
[...]
dooya schrieb:
Es ist nicht meine Notation, sondern m.W. die allgemein übliche. Es ist nicht mein Problem, wenn du damit nichts anfangen kannst.
Dass in der Aufgabe etwas anderes beschrieben ist, ist nur deine persönliche Interpretation, so wie von mir dargestellte Lösung auf meiner persönlichen Interpretation beruht.
Scheissegal wie verbreitet die Notation ist. Das ändert nichts daran. Ein Junge steht am Fenster ist nicht äquivalent zu "Es gibt einen Jungen" und "Es gibt ein Fenster". Dazu brauch man nicht interpretieren.
[...]Gehen dir die Argumente aus, oder warum beginnst du ausfallend du werden?
TGGC|_work schrieb:
[...]
dooya schrieb:
TGGC|_work schrieb:
(1) Mädchen-Jungen Verteilung = 50%. Wenn am Fenster ein Kind steht, gibt es die Möglichkeiten Mädchen oder Jungen Da es keinen Grund gibt was anderes anzunehmen 50% für beides => unabhängig weil P(A)=P(A|B)
[...]Du benutzt das Ergebnis deiner Lösung als Begründung für deren Herleitung. Zirkelschluss.
LOL. Nur weil die Zahl zufällig auch 0.5 ist, muss das noch lange kein Zirkelschluss sein. Weil ich 0.5 ausrechne kann die Chance für Geschlecht des Kindes am Fenster nicht 1:1 sein? Was soll der Humbug?
[...]Du schreibst "unabhängig weil P(A)=P(A|B)". In deinem Lösungsweg benutzt du die Annahme der Unabhängigkeit bereits. Daher ein Zirkelschluss.
TGGC|_work schrieb:
[...]
dooya schrieb:
TGGC|_work schrieb:
[...](2)wahr und falsch (entweder man steht am Fenster oder nicht)
[...]Sehe ich genauso. Du hast allerdings geschrieben:
{M,M, Kind 1 am Fenster }
{M,M, Kind 2 am Fenster }
{J,M, Kind 1 am Fenster }
{J,M, Kind 2 am Fenster }
{M,J, Kind 1 am Fenster }
{M,J, Kind 2 am Fenster }
{J,J, Kind 1 am Fenster }
{J,J, Kind 2 am Fenster }Dort steht "Kind 1 am Fenster" und "Kind 2 am Fenster" obwohl es laut deiner Antwort hier heissen müsste: "Kind 1 am Fenster" und "Kind 1 nicht am Fenster" und auch "Kind 2 am Fenster" und "Kind 2 nicht am Fenster". Es fehlen also einige Ereignisse in deiner Mengendarstellung.
Dann ergänze halt die Ereignisse und rechne dann unter der Bedingung, das eins der 8 Ereignisse oben eingetreten ist. Ergebnis ist gleich. (Wieder wegen der Unabhängigkeit, Familien mit Kindern am Fenster sind genauso aufgebaut wie alle anderen)
[...]Nein, weil die Grundmenge eine andere als in deinem Beispiel ist.
TGGC|_work schrieb:
[...]
dooya schrieb:
TGGC|_work schrieb:
[...](3)egal, Ergebnis immer gleich
[...]Das ist falsch. Sobald diese Wahrscheinlichkeiten nicht mehr gleich sind, handelt es sich nicht mehr um einen Laplace-Raum und damit ist weder das Ergebnis deiner Textversion das gleiche, noch deine Mengendarstellung nicht mehr durch auszählen bestimmbar.
Was? Nur weil ich nicht abzählen kann _muss_ das Ergebnis anders sein? Was ist das für eine Logik? Du erzählst Schwachsinn.
[...]Nein, das habe ich nicht geschrieben, sondern das deine Mengendarstellung -und in der hast du die Wahrscheinlichkeiten durch Auszählen festgestellt- nicht mehr korrekt ist. Deine Textlösung ist falsch, weil sich sobald die Gleichverteilung innerhalb der Grundmenge nicht mehr gilt, die von dir errechneten Wahrscheinlichkeiten ändern.
TGGC|_work schrieb:
[...]
dooya schrieb:
TGGC|_work schrieb:
[...](4)Weil deine Implikation falsch ist. Du sagt ( A => B ) => P(A)=P(B). Ist falsch, durch Gegenbeispiele gezeigt
[...]Ich habe nicht gefragt, was deiner Meinung nach an meiner Lösung nicht stimmt, denn das wiederholst du ja regelmäßig, sondern warum es bei dir erlaubt ist.
Weil meine Schlüsse korrekt sind. Wenn nicht, zeige welcher es nicht sein soll.
[...]Habe ich dir in einem meiner vorherigen Beiträge genau gezeigt.
TGGC|_work schrieb:
[...]
dooya schrieb:
TGGC|_work schrieb:
[...](5)Welche Mengendarstellung genau?
Bye, TGGCDiese:
Man kann weder A noch B aus dieser "Grundgesamtheit spezifizieren". Denn A und B werden durch "(nicht) am Fenster stehen" definiert, was in deiner "Grundgesamtheit" nicht vorkommt. Diese beachtet ja nicht, wer am Fenster steht, z.b. {M,J} kann man dies nicht eindeutig A zuordnen. Es geht aber so:
{M,M, Kind 1 am Fenster }
{M,M, Kind 2 am Fenster }
{J,M, Kind 1 am Fenster }
{J,M, Kind 2 am Fenster }
{M,J, Kind 1 am Fenster }
{M,J, Kind 2 am Fenster }
{J,J, Kind 1 am Fenster }
{J,J, Kind 2 am Fenster }P(A)= P( {J,M, Kind 2 am Fenster }, {M,J, Kind 1 am Fenster }, {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.5
P(B)= P( {J,M, Kind 1 am Fenster }, {M,J, Kind 2 am Fenster }, {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.5
zur Vollständigkeit
P(A geschnitten = P( {J,J, Kind 1 am Fenster }, {J,J, Kind 2 am Fenster } ) = 0.25Bye, TGGC
Quelle: http://www.c-plusplus.net/forum/viewtopic-var-p-is-839929.html#839929
Da hast du sie.
Bye, TGGC
Diese Darstellung ist falsch und das ändert sich auch nicht, wenn du sie noch ein weiteres mal postest.
-
Natürlich rechne ich mit dem allgemeinen Fall, weil ich ja nichts anderes habe. Und der Junge steht jetzt halt einfach dort. Würde ein Mädchen dort stehen, kippt das ganze in die andere Richtung, dann hat sie in 2/3 aller Fälle einen Bruder.
-
TGGC|_work schrieb:
dooya schrieb:
scrub schrieb:
ich sage es gerne nochmal: das ist die perfekte gelegenheit für einen feldversuch. wir schicken einfach ein paar leute durch deutschland, lassen sie sämtliche fenster filmen und nachher ermitteln, welche von diesen zu häusern mit familien von zwei kindern gehören (oder umgekehrt). dann zählt man aus.
Auch mit dieser Methode wirst du auf die gleichen Interpretationschwierigkeiten treffen, denn ich wäre der Meinung, dass du laut der Aufgabenstellung nur die Fenster in denen ein Junge stand berücksichtigen sollte, während TGGC das vermutlich nicht so sieht.
Falsch. Wenn du nur die Familien mit Jungen am Fenster siehst, wirst du 50% Schwester und 50% Brüder treffen. So ist es.
Denk einfach drüber nach. Stell dir vor du hast 1000 Nachbarn, bei denen du beobachten kannst. Bei 100 steht nun grad ein Kind am Fenster. Wegen perfekter Verteilung 25 JJ; 25 MM und 50 JM/MJ. Bei den 25 J steht ein Junge am Fenster. Bei den 25 M ein Mädchen. Bei den 50 JM/MJ stehen 25 Jungen und 25 Mädchen. d.h. 50 Nachbarn mit Jungen am Fenster, davon 25 mit JJ. So ist es.
Bye, TGGCDiese Verteilung habe ich nicht bestritten, ich habe geschrieben, dass man laut der Aufgabenstellung nur
die Fenster in denen ein Junge stand berücksichtigen sollte
, d.h. nur die Jungs fragst du welches Geschlecht ihr Geschwisterkind hat. Eigentlich ein anschauliches Beispiel für bedingte Wahrscheinlichkeiten.
Der Unterschied sollte eigentlich deutlich sein.
-
Plotter schrieb:
Natürlich rechne ich mit dem allgemeinen Fall, weil ich ja nichts anderes habe. Und der Junge steht jetzt halt einfach dort. Würde ein Mädchen dort stehen, kippt das ganze in die andere Richtung, dann hat sie in 2/3 aller Fälle einen Bruder.
nein, nein. du unterscheidest nicht zwischen "diesmal steht ein junge am fenster" (-> wahrscheinlichkeit für am-fenster-stehen des jungen ist unbestimmt und muß angenommen werden) und "der junge steht am fenster" (-> wahrscheinlichkeit für am-fenster-stehen des jungen = 1).
mit deiner aussage rechnest du im allgemeinen fall damit, daß der junge grundsätzlich am fenster steht. steht er aber nicht, er steht in unserem fall am fenster.wenn ich meinen baum mit der annahme umformuliere, der junge stünde immer am fenster, ja, dann kommt 2/3 raus. das ist aber quatsch, denn wir suchen uns aus einer ganzen reihe von möglichen konstellationen diejenigen aus, in denen ein ein junge existiert und dieser am fenster steht.
im übrigen stimme ich damit mit Optimizer und volkard überein, die auf seite 1 (!) zu denselben schlußfolgerungen kommen. vielleicht wollt ihr die nochmal durchlesen...