Your browser does not seem to support JavaScript. As a result, your viewing experience will be diminished, and you may not be able to execute some actions.
Please download a browser that supports JavaScript, or enable it if it's disabled (i.e. NoScript).
1+x2+1+y2+(1−x)2+(1−y)2≥(1+5)(1−xy)\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{(1-x)^2+(1-y)^2}\geq (1+\sqrt 5)(1-xy)√1+x2+√1+y2+√(1−x)2+(1−y)2≥(1+√5)(1−xy)
für 0 <= x,y <= 1.
Ich hab keinen Plan, kann mir einer helfen?
hi,
versuch doch erstmal die gleichung zu vereinfachen.
hi
1+x2+1+y2>=2\sqrt{1+x^2}+\sqrt{1+y^2} >= 2√1+x2+√1+y2>=2
aber 1+5<21+ \sqrt5 < 21+√5<2 und 1−xy<11-xy < 11−xy<1
==> (1+5)∗(1−xy)<2(1+ \sqrt5 ) * (1-xy) < 2(1+√5)∗(1−xy)<2
hoffe das hilft