bug im beta tester thread, is jedenfalls korrupt! mein letzter -> seite 3
-
Wenn ich 60mal werfe, und es kamen nur einsen, wie sicher bist Du, daß die Münze gezinkt ist?
Wenn ich 60mal werfe, und es kamen 50 einsen, wie sicher bist Du, daß die Münze gezinkt ist?
Wenn ich 60mal werfe, und es kamen 40 einsen, wie sicher bist Du, daß die Münze gezinkt ist?
Wenn ich 60mal werfe, und es kamen 30 einsen, wie sicher bist Du, daß die Münze gezinkt ist?
-
Hey Pronto, du sagst ja, dass du nach 60 Würfen eines Würfels sagen kannst, ob er gezinkt ist. Ich hab ne Münze genommen, und sie 200 mal geworfen. Hier die Versuchsreihe:
11100011010111001001
01010011000110010000
01011111110110101001
01111010100010111110
11010101100000111110
00000011111010101111
01101101110001010001
11011001100101000111
11111000101011100101
01001000011110101011
"1" entspricht Zahl, "0" Kopf.
108:92 (108/200) für Zahl. Was wird wohl als nächstes geworfen? Zahl, weil sie bisher öfter auftritt und damit wahrscheinlicher ist, oder Kopf, weil es sich ja noch ausgleichen muss? Du kannst dir ja mal ein kleines Programm prgrammieren, wo du die Reihe reinkopierst, und dann lässt du es feststellen, dass es sauviele 5- bis 8-stellige Kombinationen von Kopf und Zahl gibt, die seltener sind, als die, die nur aus Kopf oder Zahl bestehen.Übrigens meintest du, dass du nicht behauptet hast, dass man eine neue Versuchsreihe starten müsste, wenn jemand anderes den selben Würfel nutzen würde. Erstens hast du das nie ausdrücklich gesagt, und zweitens: Denkst du dann, dass die Münze mit voherigen Würfen vorbelastet ist? Beispiel: Helga wift (der Einfachkeit halber ne Münze) zufällig 4 mal Kopf. Deiner Illusion nach, ist es nun weniger wahrscheinlich, noch einmal Kopf zu würfeln. Nun kommt Bert ins Spiel. Is es dann immernoch wahrscheinlicher, Zahl zu werfen, wenn er mit der gleichen Münze würfelt ??? Oder ist die Wahrscheinlichkeit bei ihm wieder gleich? Dann allerdings müsste man doch wieder eine neue Versuchsreihe eröffnen. Dann hätte ich recht. Wenn du aber Recht hättest, würde das einen interessanten Schluss zulassen: Dass jeder Würfel nur eine "Versuchs"-Reihe hat. Jemand, der mit ihm nur 20 Mal würfelt, hat eine ungleichmäßige Verteilung, da es nicht genügend Würfe waren. Einer der nach 2 Jahren mit ihm würfelt, denkt er ist gezinkt, nur weil der Würfel sich gegenüber all seiner voherigen Werte loten will. Das ist wahrscheinlich das, was wir Zufall nennen. Du weißt es aber bestimmt besser, und alles ist (im Gesammten) total ausgeglichen...
-
@D1BAKEL: Da hast Du aber auch einen Denkfehler! Die Münzkombination 11111 ist genauso wahrscheinlich wie die Kombination 10101 oder jede andere beliebige Kombination!!! Also nicht WAHRSCHEINLICHER, wie Du es eben gesagt hast!
-
@Pronto:
*
Wenn ich 60mal werfe, und es kamen 50 einsen, wie sicher bist Du, daß die Münze gezinkt ist?
...
*Könntest du das netterweise auch noch jeweils begründen?
Insbesondere der Wechsel der Antwort von Punkt 2 zu 3 interessiert uns.Eins muss man dir ja lassen: Um Antworten bist du nicht verlegen.
Aber sag uns mal ernsthaft: Du gibst die Antworten doch nicht etwa einfach aufgrund einer vagen Intuition, oder? Etwas mehr greifbares sollte schon dahinter stecken.
-
Wenn einem keine gscheite Theorie mehr einfällt,
verlässt man sich halt auf die Intuition...
-
ich warte immer noch auf die genaue angabe der quelle!
-
Könntest du das netterweise auch noch jeweils begründen?
Insbesondere der Wechsel der Antwort von Punkt 2 zu 3 interessiert uns.Eins muss man dir ja lassen: Um Antworten bist du nicht verlegen.
Aber sag uns mal ernsthaft: Du gibst die Antworten doch nicht etwa einfach aufgrund einer vagen Intuition, oder? Etwas mehr greifbares sollte schon dahinter stecken.Nein sondern ich berechne die Standardabweichung, nehme die mal 2 und wenn ein Ereigniss über oder unter dem Mittelwert +/- der 2fachen Standardabweichung sind, dann ist es sehr sicher das der Würfel oder Münze gezinkt ist.
ich warte immer noch auf die genaue angabe der quelle!
Ich habe schon ein Buch genannt. "Statistik für Wirtschaftswissenschaftler" 12.Auflage Vahlen Verlag. oder du nimmst ein etwas einfacher geschriebenes Buch für normal Sterbliche Bosch - Lotto und andere Zufälle. Das este ist ein Buch für die UNI, das andere ist etwas einfacher ohne Formeln.
Eins muss man dir ja lassen: Um Antworten bist du nicht verlegen.
Wie so auch, einen hab ich schon überzeugt siehe oben
doofie
+Übrigens
Ich würde auch langsam misstrauisch werden, wenn nach 60 Würfen immer nur die selbe Zahl kommt....
Ihr nicht?
SIcher kanns Zufall (<-Das hatten wir schon) sein, aber sehr unwahrscheinlich.@doofie
Wenn einem keine gscheite Theorie mehr einfällt,
verlässt man sich halt auf die Intuition...Intuition brauche ich nicht, ich muß nur in den Büchern lesen, die Variablen in die Formel einsetzen und ausrechnen, hab ich in der Schule gelernt ! Toll ne !
@D1BACKEL
Ich hab schon vor einigen Seiten einen Programmcode gepostet, der genau das macht. Also währe es jetzt mal an dir ihn auszuprobieren ![ Dieser Beitrag wurde am 21.06.2002 um 20:04 Uhr von Pronto451 editiert. ]
-
Kann mir denn jemand mal ein Buch nennen wo drin steht das man einen gezinkten Würfel nicht von einem ungezinkten unterscheiden kann. Ich will ja was dazu lernen.
-
@pronto:
man kann mit einer gewissen wahrscheinlichkeit, die durchaus sehr hoch sein kann, anhand der wurfergebnisse sagen, dass ein würfel/eine münze gezinkt ist.man wird niemals sicher sagen können, ob ein würfel gezinkt ist oder nicht, wenn man nur die wurfergebnisse kennt.
du sagts einfach nur man kann... wenn du damit meinst, dass man mit hoher wahrscheinlichkeit kann, sind wir ja gleicher meinung. wenn du jedoch meinst, man kann sicher, so ist das falsch.
ein ganz anderes thema ist folgendes:
scrontch fragte, ob sich nach dreimaligem werfen von zahl mit einer (nicht gezinkten) münze die wahrscheinlichkeit für das werfen von wappen erhöht.
deine antwort war: JA!
für dieses phänomen bleibst du eine erklärung schuldig. hier behauptest du nämlich nicht, dass die münze gezinkt ist, sondern dass das bisher weniger oft eingetretene ereignis nun eine erhöhte wahrscheinlichkeit besitzt. es ging hier auch nicht um die wahrscheinlichkeit 4 mal in folge zahl zu werfen, sondern ausschließlich um die wahrscheinlichkeit für den nächsten wurf.
hier bleibt dir nichts anderes übrig, als eine mystische, nicht beweisbare kraft zu bemühen, oder zuzugeben, dass du hier wohl unrecht hattest.
statistiken verwendet man so: man ermittelt für eine große zahl an versuchen die relativen häufigkeiten von ereignissen und nimmt diese als wahrscheinlichkeiten an. prognosen erstellt man mit genau diesen wahrscheinlichkeiten.
du behauptest aber, dass nach 3 mal zahl (relative häufigkeit = 1) die wahrscheinlichkeit für erneut zahl kleiner als 0.5 ist (da wahrscheinlichkeit für wappen größer als 0.5). du gleichst also die wahrscheinlichkeit des gegenereignis der relativen häufigkeit des ereignisses an.
zu deinem looto programm:
du verwendest in deinem programm nicht die methode, zu zeigen, dass die lottoziehungen in irgendeiner weise gezinkt sind, d.h. dass irgendwelche zahlen vielleicht einfach häufiger gezogen werden.
du räumst hier wieder den zahlen die lange nicht gezogen wurden eine höhere wahrscheinlichkeit ein, weil du davon ausgehst, dass insgesamt, über einen langen zeitraum, alle zahlen gleichhäufig sind.
[ Dieser Beitrag wurde am 21.06.2002 um 21:32 Uhr von xcvb editiert. ]
-
du verwendest in deinem programm nicht die methode, zu zeigen, dass die lottoziehungen in irgendeiner weise gezinkt sind, d.h. dass irgendwelche zahlen vielleicht einfach häufiger gezogen werden.
Woher weißt du das ? Das Programm kann man doch noch gar nicht kaufen ? Es ist noch nicht ein mal fertig !?!?!? Hellseher ?
man kann mit einer gewissen wahrscheinlichkeit, die durchaus sehr hoch sein kann, anhand der wurfergebnisse sagen, dass ein würfel/eine münze gezinkt ist.
JA ?
OK, gehen wir mal von einer sehr hohen Wahrscheinlichkeit aus, das ein Würfel nicht gezinkt ist 99%.
Wenn der Würfel zu 99% zufällig würfelt - MUß jede Zahl zu 99% die gleiche Wahrscheinlichkeit haben gewürfelt zu werden, deshalb müssen alle Zahlen ca. 99% gleich häufig gewürfelt werden. Ist das jetzt RICHTIG oder zu 99% FALSCH ?
-
Antworte auf die Frage:
Glaubst Du immer noch, dass wenn ich dreimal Zahl werfe, die Wahrscheinlichkeit für Kopf beim nächsten Wurf größer als 50% ist?
-
Woher weißt du das ? Das Programm kann man doch noch gar nicht kaufen ? Es ist noch nicht ein mal fertig !?!?!? Hellseher ?
http://www.lottocommander.de/pic/ss_filter.gif
http://www.lottocommander.de/pic/ss_lange_nicht.giftippreihenprognosen anhand des rückstands...
filter für dekaden, gruppen, nachbarn, zwillinge usw. habe ich bereits als unwirksam bewiesen, da man einerseits die symbole auf den bällen oder die anordnung der kästchen auf dem papier wöchentlich ändern könnte. die zufallsvariable, mit der man die ereignisse auf den raum der reallen zahlen abbildet ist vollkommen beliebig!
OK, gehen wir mal von einer sehr hohen Wahrscheinlichkeit aus, das ein Würfel nicht gezinkt ist 99%.
Wenn der Würfel zu 99% zufällig würfelt - MUß jede Zahl zu 99% die gleiche Wahrscheinlichkeit haben gewürfelt zu werden, deshalb müssen alle Zahlen ca. 99% gleich häufig gewürfelt werden. Ist das jetzt RICHTIG oder zu 99% FALSCH ?stimmt so eigentlich, aber der fett hervorgehobene teil macht die aussage wertlos für tatsächliche prognosen. das ganze gilt nämlich nur "ca." und nur für n->oo versuche.
Ist das jetzt RICHTIG oder zu 99% FALSCH?
hälts du es nicht ungeschickt, deinen argumentationsgegner zu fragen, ob deine vermutung richtig ist?
[fakt]alle 13.98... mio tippreihen sind gleich wahrscheinlich.[/fakt]
[ Dieser Beitrag wurde am 21.06.2002 um 22:21 Uhr von xcvb editiert. ]
-
Jetzt hab ich die Idee.
Ich versuche es mit einer LOGISCHEN Beweisführung, ihr seid doch alles Programmierer, Logik muß doch bei euch im Blut liegen !Also....
Versuchsobjek : Ein Würfel
Es gibt jetzt genau zwei Aussagen, die sich gegenseitig ausschließen (Also nicht 99% oder so, denn es gibt keinen nur zu 70% gezinkten Würfel !?!?! wie soll der denn aussehen, einmal ist die Seite mit der 1 schwerer und im nächsten Moment wieder nicht ... physikalisch sehr zweifelhaft)
a.) Der Würfel ist gezinkt.
b.) Der Würfel ist nicht gezinkt.Nehmen wir Aussage a.) an.
1.) Dann folgt logisch : Eine Zahl muß öfter kommen als die anderen.
2.) Das diese Zahl öfter kommt, muß folglich beim würfeln erkennbar sein, weil sie ja häufiger kommt !!
3.) Daraus folgt logisch : Wenn ich ermitteln kann um welche Zahl es sich handelt, werde ich beim Wetten auf diese Zahl zwangsläufig gewinnen, weil ich öfter gewinne als verliere, da diese Zahl öfter gewürfelt wird.Nehmen wie Aussage b.) an.
1.) Daraus folgt, jede Zahl muß ungefähr gleich oft gewürfelt werden.
2.) Diese "Gleichverteilung ist zwingend, sonst würde Aussage a.) eintreten !!! siehe a.) 1.)
3.) Wenn die Gleichverteilung zwingend ist, kann ich ein Schema feststellen nämlich die Gleichverteilung.
4.) Da sich bei einer Gleichverteilung Extrema wieder angleichen müssen, (sonst würde das Gleichgewicht gestört ->Folge Aussage a.) tritt in Kraft, siehe a.) 1.)) kann ich beim wetten die negativen Extrema tippen und muß öfter gewinnen, weil sich die Gleichverteilung über einen längeren Zeitraum wieder hestellen muß und diese Zahlen dann öfter gezogen werden.Wenn ihr natürlich immer noch GLAUBT, das man einen gezinkten nicht von einem ungezinkten Würfel unterscheiben kann, dann ist euch einfach nicht zu helfen.
Moment doch ... ihr nehmt zwei Würfel, den einen Manipuliert ihr. Ihr ZINKT ihn also, dann wißt ihr zu 100% welcher Würfel gezinkt ist und welcher nicht, und dann macht ihr den Versuch .... Jetzt könnt auch ihr euch nicht mehr herausreden !!!
Ihr sein nämlich die Scharlatane, die den Leuten einreden wollen ... wette ruhig auf den gezinkten Würfel, das was der würfelt ist NUR Zufall !!!!!!
[ Dieser Beitrag wurde am 21.06.2002 um 23:44 Uhr von Pronto451 editiert. ]
-
fall a.)
1.) Dann folgt logisch : Eine Zahl muß öfter kommen als die anderen.
bereits die erste folgerung ist falsch. auch ein gezinkter würfel besitzt eine verteilungskurve. d.h. selbst die durch die manipulation geförderte zahl kann seltener kommen als der rest. besonders bei kleinen manipulationen (w(6) = 0,18 anstelle von 1/6) wird es nicht möglich sein, eine einigermaßen sichere aussage zu treffen, dass der würfel gezinkt ist, da sein ergebnis immer noch in der 90% umgebung eines nicht gezinkten würfel liegt.
in punkt 2. und 3. verwendest du einem "muss" und "zwangsläufig". da es aber eben nicht um wahrscheinlichkeiten von 1 oder 0 geht, kann man nicht mit muss und zwangsläufig argumentieren.
fall b.)
bei 1. benutzt du wieder muss....Diese "Gleichverteilung ist zwingend, sonst würde Aussage a.) eintreten !!! siehe a.) 1.)
hier passiert dir wieder ein fehler. bei deiner beobachtung wirst du zu einem kleinen prozentsatz auch nicht gezinkte würfel als gezinkt erkennen und genauso einen kleinen teil der gezinkten würfel als nicht gezinkt. die gleichverteilung ist nicht zwingend.
kann ich beim wetten die negativen Extrema tippen und muß öfter gewinnen, weil sich die Gleichverteilung über einen längeren Zeitraum wieder hestellen muß und diese Zahlen dann öfter gezogen werden
auch diese folgerung stimmt nicht.
wenn ich nach 1000 münzwürfen 900 wappen habe, so reicht es, in den nächsten unendlich vielen würfen ausgeglichene ergebnisse zu werfen, um die gesamtbilanz auszugleichen.es ist nicht nötig, die wahrscheinlichkeiten über den ausgleich hinaus zu ändern. beispiel:
10 würfe ergeben 10 wappen. wahrscheinlichkeiten bleiben aber bei 0.5. nächsten 1000 würfe ergeben 500 wappen. gesamt: 1010 würfe ergaben 510 wappen - is doch ausgeglichen genug. und eine unendliche zahl versuche kann jedes ungleichgewicht ausgleichen ohne die wahrscheinlichkeiten zu ändern.
-
@Pronto:
Der Fehler im Beweis liegt bei a)Du sagst, wenn der Würfel gezinkt ist, dann wirft er besonders häufig eine bestimmte Zahl, mathematisch:
Würfel gezinkt => besonders häufig eine bestimmte Zahl.
Das beweist bzw erklärst Du auch, und das ist auch richtig. Und dann verkaufst Du uns folgende Aussage als bewiesen:
besonders häufig eine bestimmte Zahl => Würfel gezinkt
Das ist aber leicht was anderes, denn wenn aus A B folgt, dann folgt aus B noch lange nicht A. Und den Beweis dafür bist Du uns noch schuldig.
Ich glaube, wir reden da auch ein bißchen aneinander vorbei.
Es ist sehr sehr unwahrscheinlich, daß ein Würfel aus 60 Würfen 40/50 mal die 1 würfelt. Und ich persönlich bin mir dann auch 100% sicher, daß er gezinkt ist würde mit dem nicht weiterspielen. Natürlich bist Du Dir da sicher. Aber dennoch ist es rein theoretisch möglich, daß genau diese Wurfkombination auch bei einem nicht gezinkten Würfel auftaucht (Die Wahrscheinlichkeit ist jedenfalls >0). Daher können wir nicht wirklich sicher sein. Zumindest nicht mathematische gesehen. Das das vom Gefühl her wohl gezinkt ist, ist klar und wahrscheinlich auch richtig, aber eben nicht zu 100% bewiesen und auch nicht zu 100% beweisbar.
-
@pronto
Du hast mich doch nicht überzeugt! Ich möchte mich nicht in so einen niveaulosen streit verwickeln und versuche deshalbt unparteiisch zu bleiben.
Du meinst wahrscheinlich, dass man, wenn von 100 Würfen mit einer Münze 99mal Wappen erscheint, davon ausgehen kann, dass die Münze gezinkt sei.
xcvb u. co meinen (was auch stimmt), dass jede Kombination gleichwahrscheinlich ist.
Ich veruch mal, dich nachzumachen:Ich habe von 100 Würfen 99mal Wappen bekommen. Das ist unwahrscheinlich, weil es ja viel wahrscheinlicher ist, dass eine andere Kombination kommt, es gibt ja sooviele andere Möglichkeiten, dass es wahrscheinlicher ist, dass eine von denen kommt.
Die Münze muss gezinkt sein!Dein Fehler liegt darin, dass du die versuchst, die Wahrscheinlichkeiten von allen anderen Möglichkeiten zusammenzuzählen, und dir dann denkst, dass die Wahrscheinlichkeit, irgendeine andere Kombination zu bekommen größer ist, als deine aktuelle.
Aber dann müsste das ja für jede Möglichkeit gelten, die du bekommst.
Wenn du jetzt 50/50 wirfst, dann kannst du ja genauso sagen, es ist viel wahrscheinlicher, dass diese Möglichkeit nicht kommt.
???@irgendwen
Danke für die verspätete Antwort mit den Unendlichkeiten
-
Ich glaube, wir reden da auch ein bißchen aneinander vorbei.
Ja das glaube ich so langsam auch, ihr redet euch immer mit dem 0,0000001 % Wahrscheinlichkeit raus, und ich betrachte immer die anderen 99,9999999%.
Wenn man nur ein schwarzes Pixel eines Bildes betrachten und dann darauf schließt das das ganze Bild schwarz ist, ist einfach dumm.@xcvb gibt doch selber zu das sich das Gleichgewicht in den nächsten würfen wieder herstellen wird .... Also weiß er ganz genau, das es diese Gleichgewicht gibt. Er will es nur nich wahrhaben, sonst hätte er ja mal unrecht .... Das größte Problem sind eure EGOS.
Erst Argumetiert ihr das man einen gezinkten nicht von einem anderen unterscheiden kann, und jetzt geht es in 10 würfen nicht aber in 1000, das ist doch Selbstbetrug. In 10 Würfen können beide Würfel gleich aussehen, nach 1000 dann doch wieder nicht .... und wenn in 1000 nicht dann in 100.000 .... Also entscheidet euch mal für eine Seite !?!?!
-
@Pronto
Die Leute hier sind doch so weltfremd, das Sie nur noch in ihren 0,000001 Wahrscheinlichkeiten denken, das Sie die Realität doch gar nicht mehr Wahrnehmen.Die würden doch nie einen Würfel zur Hand nehmen, aus Angst feststellen zu müssen, das man mit ein paar Würfen doch feststellen kann das er gezinkt ist oder nicht.
Die Logische Schußfolgerung ist doch jedem normalen Menschen sofort einleuchtend.
An deiner Stelle würde ich es langsam aufgeben den Leuten hier noch was beizubringen. Die werden nie zugeben das sie falsch liegen. Und da es immer eine kleine Unsicherheit gibt, du weißt ja selbst das man nie 100% sicher sein kann, werden Sie immer nur ihre 0.000001% sehen und nicht die Wirklichkeit.
-
Original erstellt von Pronto451:
Nein sondern ich berechne die Standardabweichung, nehme die mal 2 und wenn ein Ereigniss über oder unter dem Mittelwert +/- der 2fachen Standardabweichung sind, dann ist es sehr sicher das der Würfel oder Münze gezinkt ist.Ok. Wir kommen der Sache näher.
Aus http://wwwhomes.uni-bielefeld.de/hjawww/glossar/node132.html
Innerhalb einer (zweier, dreier) Standardabweichung(en) rechts und links des Erwartungswertes liegen 68,27% (95,45%, 99,73%) aller Werte einer normalverteilten Zufallsvariablen.
Das scheint der Satz zu sein, von dem Du ausgehst.
Nur trifft der nicht bei kleinen Messungen zu.
Hab gerade 6mal gewürfelt: 651111
Der Würfel war aber nicht gezinkt.
Der Rechnung nach war er es aber.
Wie läßt sich der Widerspruch auflösen?
-
Original erstellt von Pronto451:
**[...]Wenn man nur ein schwarzes Pixel eines Bildes betrachten und dann darauf schließt das das ganze Bild schwarz ist, ist einfach dumm.
[...]Er will es nur nich wahrhaben, sonst hätte er ja mal unrecht ....
[...]Das größte Problem sind eure EGOS.
**
so kommen wir nicht weiter. ich hab sowieso keine lust mehr.
[ Dieser Beitrag wurde am 23.06.2002 um 14:37 Uhr von Tendor editiert. ]