Warum enthält ein Informatikstudium soviel Mathe?



  • sososo schrieb:

    volkard schrieb:

    Deswegen die vielen Stellenanzeigen, die ein abgeschlossenes Studium fordern, aber gar nicht einen Studiengang wünschen.

    Für Softwareentwicklung? Zeig mir 5.

    Es gibt zumindest Stellen, bei denen Bewerber aus einem ganzen Spektrum an Studien gesucht werden. Im IT-Bereich findet man zum Beispiel ganz oft Stellen für Leute mit abgeschlossenem Informatik-, Mathematik- oder Physikstudium, oder etwas vergleichbarem.

    Siehe zum Beispiel da:

    Java Backend-Entwickler: http://www.itjobboard.de/IT-Job/Java-Backend-Entwickler-in-Aachen-gesucht/7891829/de/?xc=207&WT.mc_id=A156

    Java Architekt: http://www.itjobboard.de/IT-Job/IT-Architekt-mit-Schwerpunkt-Java-JEE-gesucht/7896791/de/?xc=207&WT.mc_id=A156

    Java Frontend- Entwickler: http://www.itjobboard.de/IT-Job/Java-Frontend-Entwickler-in-Aachen-gesucht/7885659/de/?xc=207&WT.mc_id=A156

    Da wird jemand mit "Studium der Informatik bzw. eines technischen, wirtschaftlichen oder naturwissenschaftlichen Studiengangs mit Abschluss" gesucht.

    Das ist ein Bruchteil der Resultate einer ganz schneller Suche bei Google. Wie man sieht, werden offensichtlich Fähigkeiten bei den Leuten gesucht, die sowohl in einem Informatik-, Mathematik als auch einem Physikstudium vermittelt werden. Und dann kann man mal überlegen, wo da die Gemeinsamkeiten liegen. Wer weiß, ob die Leute noch Informatiker für diese Stellen suchen würden, wenn der Mathematikanteil im Studium stark beschnitten werden würde.



  • Gregor schrieb:

    Siehe zum Beispiel da:

    - Mindestens 3 Jahre Berufserfahrung in der Java Backend- Entwicklung
    - Mindestens 5 Jahre Berufserfahrung als Entwickler von Java/JEE Softwarelösungen. Dadurch konnten Sie Kenntnisse u.a. mit Eclipse RCP,...
    - Mindestens 3 Jahre Berufserfahrung in der Java Frontend- Entwicklung
    - mehrjährige Berufserfahrung in der Softwareentwicklung

    LOL :schland:


  • Administrator

    Gregor schrieb:

    In dem Fall waren die Informatikvorlesungen jenseits der Mathematik wohl zu leicht.

    lol, da kenne ich viele, welche lautstark ausgerufen hätten. Das Problem bei den Informatikvorlesungen war bei mir vor allem, dass ich mir vieles schon längstens selbst beigebracht hatte. Gab nur wenige Vorlesungen, wo ich wirklich neues gelernt habe. Aber auch dort wo ich neues gelernt habe, war es für mich immer leicht die Zusammenhänge zu verstehen und es dann anzuwenden. Es liegt mir einfach.

    Ich finde es witzig, wie ihr hier davon ausgeht, dass man Mathe einfach verstehen können muss. Als wenn alle gleich gut Mathe lernen könnten. Als wenn alle Menschen genau gleich wären.

    Ich sehe ein, dass man mit Mathematik das logische Denken fördern kann, aber dann soll man doch bitte etwas in der Mathematik tun, was man auch in der Informatik verwenden kann. Wozu bitteschön soll ich die mathematischen Grundlagen der Quantenphysik lernen? Nur um daran zu wachsen, halte ich für eine sehr schwache Argumentation, denn Quantenphysik ist arg kompliziert und kann einem schnell überfordern. Zwei mal scheitern und man darf die Prüfung nicht mehr wiederholen und kann das Informatikstudium abbrechen. Und dann mault die Wirtschaft noch rum, dass sie zuwenig Informatiker hätten?
    Am besten sollte jeder Informatiker Medizin, Biologie, Chemie, Jura, Wirtschaft und Physik zusätzlich als Studienfach bekommen, damit sie daran wachsen können! Dass am Ende dann keine Informatiker mehr da sind, ist doch egal ... 🙄
    Man kann auch an der Informatik wachsen, dazu braucht es keine anderen Fächer. Wobei ich jetzt mit Informatik auch die dazugehörige Mathematik meine. Aber eben Mathematik, welche für die Informatik notwendig ist.

    Ich frage mich allerdings auch, ob es zum Teil nicht ein Problem ist, weil bisher viele Informatiker aus dem Bereich der Physik und Mathematik kamen? Weil diese "alten Generationen" so in die Informatik eingestiegen sind, haben vielleicht viele das Gefühl, dass man dies auch noch heute so tun muss? Statt das sie merken, dass Informatik ein eigenes Fach darstellt.

    Naja, wie auch immer. Ich bin aktuell sehr zufrieden und das ist die Hauptsache. Unsere Abgänger bekommen ohne Probleme eine Stelle und die FH hat in der Umgebung einen guten Ruf. Ich habe auch das Gefühl, dass ich deutlich mehr gefordert werde als an der Uni. Und solange ich zufrieden bin, ist ja alles gut 😃

    Grüssli



  • no_code schrieb:

    Gregor schrieb:

    Siehe zum Beispiel da:

    - Mindestens 3 Jahre Berufserfahrung in der Java Backend- Entwicklung
    - Mindestens 5 Jahre Berufserfahrung als Entwickler von Java/JEE Softwarelösungen. Dadurch konnten Sie Kenntnisse u.a. mit Eclipse RCP,...
    - Mindestens 3 Jahre Berufserfahrung in der Java Frontend- Entwicklung
    - mehrjährige Berufserfahrung in der Softwareentwicklung

    LOL :schland:

    Ja, aber das Studium ist egal. Der Punkt ist eben, dass Du die aktuellen Werkzeuge erst im Beruf lernst. Keiner kann von einem Studium erwarten, dort zu lernen, wie die Java-Standardbibliothek im Detail aussieht. Das wäre für ein Studium auch völlige Zeitverschwendung. Derartiges Wissen ist veraltet, noch bevor der Student das Studium abgeschlossen hat.



  • sososo schrieb:

    Warum gibts dann überhaupt unterschiedliche Studiengänge?

    Weil man damit noch besser rausprüfen kann. Und weil es ungemein praktisch ist, neben der Hauptaufgabe den Studis auch gleich noch fachbezogenes Zeugs beizubringen, das sie später mal verwenden können, um darauf aufzubauen.

    Ich meinte natürlich mit "abgeschlossenes Studium" "abgeschlossenes technisches Studium" oder sowas.



  • Gregor schrieb:

    Keiner kann von einem Studium erwarten, dort zu lernen, wie die Java-Standardbibliothek im Detail aussieht. Das wäre für ein Studium auch völlige Zeitverschwendung. Derartiges Wissen ist veraltet, noch bevor der Student das Studium abgeschlossen hat.

    Grace_Hopper kam im Zuge des Millennium-Bug noch einmal zu zweifelhafter Berühmtheit. Sie beschränkte in ihren Programmen die Jahresangabe auf zwei Ziffern, was im Jahr 1959 von den Entwicklern der Programmiersprache Cobol bei der Erstellung der Cobol-Libraries übernommen wurde, um den seinerzeit teuren Arbeitsspeicher einzusparen. Die Entwickler und Hopper erwarteten nicht, dass viele ihrer Funktionen im Jahr 1999 noch unverändert verwendet würden, was jedoch der Fall war.

    LOL :schland:



  • Dravere schrieb:

    Ich habe an der schriftlichen Matura-Mathe-Prüfung (Matura gleich schweizer Abitur) eine 5,5 (Deutschland: 1,5) gemacht und war an der Uni völlig überfordert.

    dir ist schon klar, daß schulmathematik nicht mehr als kindergekritzel ist - um mal bei deinem zeichenbeispielen zu bleieben. davon kannst du ja mal gar nichts ableiten (siehst du, hier mußt du schon ableiten können 🙂 )
    bei hochschulmathematik mußt du eben einen gewissen schwellwert überschreiten, dann läufts. nur weil dir das nicht möglich war, mußt du das nicht alles als überflüssig hinstellen. deine fh scheint tatsächlich eher eine fachinformatikerausbildungsstätte zu sein. da kann ich auch nur hoffen, daß das nicht die regel ist.

    grüße, mm



  • Dravere schrieb:

    Ich finde es witzig, wie ihr hier davon ausgeht, dass man Mathe einfach verstehen können muss. Als wenn alle gleich gut Mathe lernen könnten. Als wenn alle Menschen genau gleich wären.

    Davon gehe ich nicht aus. Mir ist die Mathematik auch immer schwer gefallen und ich habe da nur durchschnittliche Noten bekommen. Allerdings ist es so, dass ich mich auch im Studium eher in eine Richtung entwickelt habe, die mehr Mathematik erfordert. Insofern sehe ich , wo es überall direkte Anwendungen der Mathematik gibt. Und ich sehe auch, dass mir gerade die harten Theorievorlesungen etwas gebracht haben. In den praktisch orientierten Vorlesungen habe ich ehrlich gesagt nur Zeug gelernt, das man sofort wieder vergessen kann. Drehen wir doch mal die Sache um: Alle direkten Informatikthemen haben wesentlich weniger Anwendungsgebiete als die Mathematik. Auch innerhalb der Informatik. Wenn Du in einer Vorlesung zum Beispiel VHDL lernst, dann bringt Dir das nur dann etwas, wenn Du irgendwann eben genau das nutzt. Und so sieht es mit allen konkreten Werkzeugen aus, die man im Informatikstudium lernt. Die Mathematik gibt einem hingegen ein Strukturverständnis, das man nutzen kann, um sich neue Werkzeuge anzueignen. Diese neuen Werkzeugen können zum Beispiel Algorithmen oder ähnliches sein.

    Letztendlich ist es so, dass in der Informatik die meisten Teilgebiete nur recht lose mit dem Rest verbunden sind. Und je praktischer eine Vorlesung ausgerichtet ist, desto spezieller sind auch die Anwendungsgebiete dieser Vorlesung. Ich weiß nicht, ob es so etwas irgendwo gibt, aber falls jemand mal eine Vorlesung über Entwurfsmuster gehört hat, dann wird ihm das wohl nur dann etwas bringen, wenn er später objektorientierte Programmierung/Entwicklung betreibt.

    Dravere schrieb:

    Ich sehe ein, dass man mit Mathematik das logische Denken fördern kann, aber dann soll man doch bitte etwas in der Mathematik tun, was man auch in der Informatik verwenden kann. Wozu bitteschön soll ich die mathematischen Grundlagen der Quantenphysik lernen? Nur um daran zu wachsen, halte ich für eine sehr schwache Argumentation, denn Quantenphysik ist arg kompliziert und kann einem schnell überfordern.

    1. Jenseits von allem: Quantenmechanik ist ein enorm schöner, bedeutender und interessanter Teil der Physik. Ich empfehle jedem, sich damit auseinanderzusetzen. 😋

    2. Die mathematische Grundlage der Quantenmechanik ist der Hilbertraum. Den hast Du auch in vielen Bereichen der Informatik gegeben. In der Systemtheorie, wenn Du die ganze Zeit zwischen Orts- und Frequenzraum wechselst, dann hast Du eine entsprechende Struktur. Und die findet wieder in Bild-, Sprach- und Signalverarbeitung ihre Anwendung.

    3. Weißt Du denn nicht, dass wir in 10 Jahren alle mit Quantencomputern rechnen und nur noch dabei sind, Shor's Algorithmus und so weiter umzusetzen. Vielleicht ist Quantencomputing dann das neue "Web 2.0". Also der neue Hype, dem jeder folgt und in dem jeder aktiv ist. Das war natürlich ironisch gemeint. Aber stell Dir mal vor, wie sich die Informatik mit Quantencomputern ändern würde. Was glaubst Du, was Du dann plötzlich für einen Mathematikanteil hättest. ...und wenn es zu Quantencomputing in der Praxis kommt, dann ist das auch der neue Hype für eine geraume Zeit.


  • Administrator

    mezzo mix schrieb:

    dir ist schon klar, daß schulmathematik nicht mehr als kindergekritzel ist - um mal bei deinem zeichenbeispielen zu bleieben. davon kannst du ja mal gar nichts ableiten (siehst du, hier mußt du schon ableiten können 🙂 )

    Dir ist schon klar, dass die Matura ein bisschen einen besseren Ruf hat, als das Abitur in Deutschland? Ableitung und Integration, wogegen ich übrigens gar nichts habe, ist ganz normal Teil des Maturastoffes. Und das haben nicht nur die Mathe-Matura-Schüler, sondern alle! Auch die Sprachler, Künstler usw. usf.
    Aber klar, das Studium geht dann einige Schritte weiter. Weshalb ich auch kein Mathestudium angefangen haben, sondern ein Informatikstudium.

    mezzo mix schrieb:

    bei hochschulmathematik mußt du eben einen gewissen schwellwert überschreiten, dann läufts. nur weil dir das nicht möglich war, mußt du das nicht alles als überflüssig hinstellen.

    Alter Spruch. Du musst nur genügend lernen, dann läuft es. Oft genug gehört, oft genug probiert. Kann man auf alles anwenden, ist aber fern von jegwelcher Realität. Wenn mehr als 50% der Studenten durchfallen, dann stimmt etwas am System nicht. Um ehrlich zu sein, gab es sogar zum Teil Durchfallsquoten von 80-90%. Dort hatte man sich dann entschieden, doch etwas zu ändern. Ein bisschen genützt hat es jedenfalls, gereicht aber noch nicht.

    @Gregor,
    Ich sage ja nichts gegen die Mathegrundlagen. Wie gesagt, gegen sowas einfaches wie Ableitung und Integration habe ich absolut nichts einzuwenden. Das sind sogar mehr als nur Grundlagen, dass ist einfach Voraussetzung, grundsätzlich sogar vor dem Studium 🙂
    Ich bin halt nur der Meinung, dass man als Informatiker die Mathematik anwenden soll. Sie praktisch benutzen soll. Dann bekommt man ein Gefühl für die Mathematik. Einfach nur theoretische Beweisführung durchzuführen und das noch in völlig entfernten Bereichen der Informatik, halte ich für völlig sinnlos. Damit bekommt man kein Gespür für die Mathematik, es demotiviert einem nur und bringt einem am Ende wesentlich weniger, als wenn man gelernt hat Mathematik in der Informatik anzuwenden.

    Übrigens: Als Informatiker muss ich keinen Quantencomputer bauen können. Ich muss sehr wahrscheinlich ein paar grundlegende Dinge verstehen, dass muss aber nicht ins Detail gehen. Vielleicht von gewissen Formeln wissen und diese anwenden können, wobei bereits das fraglich sein dürfte. Aber ich muss sicher keine von diesen Formeln beweisen können. Das ist schliesslich nicht die Aufgabe eines Informatikers, egal wie und wo er mit Quantencomputern arbeitet.
    Ein Informatiker wendet die Mathematik an, er beweist sie nicht!

    Grüssli



  • Dravere schrieb:

    Dir ist schon klar, dass die Matura ein bisschen einen besseren Ruf hat, als das Abitur in Deutschland? Ableitung und Integration, wogegen ich übrigens gar nichts habe, ist ganz normal Teil des Maturastoffes.

    Echt? Das ist in Deutschland ganz anders. Wir machen das große Einmaleins, Prozentrechnen und Papierflieger.



  • Dravere schrieb:

    Du musst nur genügend lernen, dann läuft es. Oft genug gehört, oft genug probiert. Kann man auf alles anwenden, ist aber fern von jegwelcher Realität. Wenn mehr als 50% der Studenten durchfallen, dann stimmt etwas am System nicht. Um ehrlich zu sein, gab es sogar zum Teil Durchfallsquoten von 80-90%. Dort hatte man sich dann entschieden, doch etwas zu ändern.

    Ja. Man muß die Anforderungen weiter senken. Senken, senken, senken.


  • Mod

    volkard schrieb:

    Dravere schrieb:

    Dir ist schon klar, dass die Matura ein bisschen einen besseren Ruf hat, als das Abitur in Deutschland? Ableitung und Integration, wogegen ich übrigens gar nichts habe, ist ganz normal Teil des Maturastoffes.

    Echt? Das ist in Deutschland ganz anders. Wir machen das große Einmaleins, Prozentrechnen und Papierflieger.

    Wunder dich nicht, ich habe schon Studenten im ersten Semester gesehen die Matheleistungskurs hatten und noch nie eine Matrix gesehen haben.



  • Dravere schrieb:

    Ich sage ja nichts gegen die Mathegrundlagen. Wie gesagt, gegen sowas einfaches wie Ableitung und Integration habe ich absolut nichts einzuwenden. Das sind sogar mehr als nur Grundlagen, dass ist einfach Voraussetzung, grundsätzlich sogar vor dem Studium 🙂

    Naja, dem Threadersteller ging es ja schon um diese Themen:

    6+3*56 schrieb:

    Wer hat Informatik studiert und braucht jetzt das ganze Zeugs wie Ableiten und Integrieren?

    Dravere schrieb:

    Ich bin halt nur der Meinung, dass man als Informatiker die Mathematik anwenden soll. Sie praktisch benutzen soll. Dann bekommt man ein Gefühl für die Mathematik. Einfach nur theoretische Beweisführung durchzuführen und das noch in völlig entfernten Bereichen der Informatik, halte ich für völlig sinnlos. Damit bekommt man kein Gespür für die Mathematik, es demotiviert einem nur und bringt einem am Ende wesentlich weniger, als wenn man gelernt hat Mathematik in der Informatik anzuwenden.

    Generell musst Du in der Mathematik in erster Linie 2 Dinge lernen: Zum einen musst Du rechnen lernen, zum anderen musst Du Dir Wissen über die mathematischen Strukturen aneignen. Rechnen lernen ist eigentlich einfach: Du machst Dir "Kochrezepte" für die jeweiligen Arten von Aufgaben und übst ein bisschen mit denen. Das Erlernen der Strukturen ist der heiklere Teil. Ein Verständnis für diese zu bekommen ist nicht so leicht. Und ich denke, dass Beweise in diesem Zusammenhang durchaus oft erleuchtend sein können. Ich habe mich vor den Beweisen in der Mathematik leider oft gedrückt und vermutlich bin ich deshalb auch nur mittelmäßig gewesen. In den Bereichen, in denen ich die Struktur verstanden habe, sind die Beweise dann aber ganz einfach gewesen. Die Beweise gehen also mit dem Verständnis der Strukturen einher.

    Dravere schrieb:

    Übrigens: Als Informatiker muss ich keinen Quantencomputer bauen können. Ich muss sehr wahrscheinlich ein paar grundlegende Dinge verstehen, dass muss aber nicht ins Detail gehen. Vielleicht von gewissen Formeln wissen und diese anwenden können, wobei bereits das fraglich sein dürfte. Aber ich muss sicher keine von diesen Formeln beweisen können. Das ist schliesslich nicht die Aufgabe eines Informatikers, egal wie und wo er mit Quantencomputern arbeitet.
    Ein Informatiker wendet die Mathematik an, er beweist sie nicht!

    Als Informatiker musst Du Algorithmen entwickeln können. Und dazu musst Du die Rechenkonzepte verstehen. Wenn Du einen Quantenalgorithmus entwickeln möchtest, wirst Du nicht daran vorbeikommen, die Konzepte der Quantenmechanik zu kennen.



  • volkard schrieb:

    Dravere schrieb:

    Dir ist schon klar, dass die Matura ein bisschen einen besseren Ruf hat, als das Abitur in Deutschland? Ableitung und Integration, wogegen ich übrigens gar nichts habe, ist ganz normal Teil des Maturastoffes.

    Echt? Das ist in Deutschland ganz anders. Wir machen das große Einmaleins, Prozentrechnen und Papierflieger.

    Ich glaube, an Papierfliegern kann man durchaus den gesamten Mathematik-Schulstoff illustrieren. 🙂



  • SeppJ schrieb:

    Wunder dich nicht, ich habe schon Studenten im ersten Semester gesehen die Matheleistungskurs hatten und noch nie eine Matrix gesehen haben.

    *meld*
    Was das jetzt mit Ableiten und Integrieren zu tun haben soll, ist mir nicht so ganz klar. Es hat ja keiner behauptet, dass man ALLES in der Schule macht.



  • Gregor schrieb:

    volkard schrieb:

    Dravere schrieb:

    Dir ist schon klar, dass die Matura ein bisschen einen besseren Ruf hat, als das Abitur in Deutschland? Ableitung und Integration, wogegen ich übrigens gar nichts habe, ist ganz normal Teil des Maturastoffes.

    Echt? Das ist in Deutschland ganz anders. Wir machen das große Einmaleins, Prozentrechnen und Papierflieger.

    Ich glaube, an Papierfliegern kann man durchaus den gesamten Mathematik-Schulstoff illustrieren. 🙂

    Wenn nicht gar mehr 😛



  • Dravere schrieb:

    mezzo mix schrieb:

    bei hochschulmathematik mußt du eben einen gewissen schwellwert überschreiten, dann läufts. nur weil dir das nicht möglich war, mußt du das nicht alles als überflüssig hinstellen.

    Alter Spruch. Du musst nur genügend lernen, dann läuft es. Oft genug gehört, oft genug probiert.

    du hast den punkt nicht erreicht, an dem du mit der mathematik hättest arbeiten können. du hast nicht verstanden, wie mathematik funktioniert.

    Dravere schrieb:

    Kann man auf alles anwenden, ist aber fern von jegwelcher Realität. Wenn mehr als 50% der Studenten durchfallen, dann stimmt etwas am System nicht.

    nein, nicht jeder muß informatik studieren. für den rest gibt's immer noch bwl...


  • Administrator

    volkard schrieb:

    Dravere schrieb:

    Du musst nur genügend lernen, dann läuft es. Oft genug gehört, oft genug probiert. Kann man auf alles anwenden, ist aber fern von jegwelcher Realität. Wenn mehr als 50% der Studenten durchfallen, dann stimmt etwas am System nicht. Um ehrlich zu sein, gab es sogar zum Teil Durchfallsquoten von 80-90%. Dort hatte man sich dann entschieden, doch etwas zu ändern.

    Ja. Man muß die Anforderungen weiter senken. Senken, senken, senken.

    Genau! Bis 120% der Studenten durchkommen und keiner sich Gedanken über diese seltsame Prozentzahl macht 😃 🤡

    Gregor schrieb:

    Naja, dem Threadersteller ging es ja schon um diese Themen:

    6+3*56 schrieb:

    Wer hat Informatik studiert und braucht jetzt das ganze Zeugs wie Ableiten und Integrieren?

    Hmmm, ok, stimmt. Also das gehört definitiv dazu. Wobei ich bis jetzt allerdings Ableitung und Integration auch nur angewendet habe, um Algorithmen herzuleiten. Die Beweisführung, wieso Integration oder Ableitung überhaupt funktioniert, habe ich nie mehr benötigt 😉

    Gregor schrieb:

    Generell musst Du in der Mathematik in erster Linie 2 Dinge lernen: Zum einen musst Du rechnen lernen, zum anderen musst Du Dir Wissen über die mathematischen Strukturen aneignen.

    Kannst du den zweiten Punkt ein wenig genauer erläutern? Ich bin auch nicht der Meinung, dass man nur rechnen lernen soll, aber das Gefühl für die Mathematik (was du womöglich als Struktur bezeichnest?) erhält man nicht durch theoretische Beweise. Erst durch die Anwendung der Mathematik erkennt man, wie die Mathematik aufgebaut ist. Es ist doch immer so, das beste Theoriebuch hat viele praktische Beispiele.

    Gregor schrieb:

    Als Informatiker musst Du Algorithmen entwickeln können. Und dazu musst Du die Rechenkonzepte verstehen. Wenn Du einen Quantenalgorithmus entwickeln möchtest, wirst Du nicht daran vorbeikommen, die Konzepte der Quantenmechanik zu kennen.

    Gegen die Konzepte sagte ich ja nichts. Das sind wohl die grundlegenden Dinge. Aber ich muss diese Rechenkonzepte nicht beweisen können, dass sie korrekt sind. Ich darf als Informatiker davon ausgehen, dass sie korrekt sind.

    Man kann sich sogar fragen, ob man die Konzepte überhaupt verstehen muss, um sie anwenden zu können? Reicht es sie nur zu kennen?
    Dazu habe ich in verschiedenen Foren jetzt schon ganz interessante Diskussionen erlebt. Ich selbst konnte mich noch für keine Seite entscheiden. Gut, wird vielleicht ein wenig Off-Topic ... oder man kann es als grundlgegende Frage anschauen, wie Mathematik überhaupt unterrichtet werden soll 🙂

    Grüssli


  • Mod

    Bashar schrieb:

    SeppJ schrieb:

    Wunder dich nicht, ich habe schon Studenten im ersten Semester gesehen die Matheleistungskurs hatten und noch nie eine Matrix gesehen haben.

    *meld*
    Was das jetzt mit Ableiten und Integrieren zu tun haben soll, ist mir nicht so ganz klar. Es hat ja keiner behauptet, dass man ALLES in der Schule macht.

    Ich hatte angenommen, dass volkard wohl aus seiner eigenen Erfahrung falsche Schlüsse über die Qualität des deutschen Abiturs zieht. Die ist nämlich geringer als man so denkt. Besagte Studenten haben mich nämlich sehr verwundert angesehen als ich ihnen erklärte, dass dies bei mir im Abi noch zum Grundstoff zählte. Aber das ist wohl ganz allgemein rausgekürzt worden, denn das waren keine Einzelfälle sondern die Regel.



  • Dravere schrieb:

    Gregor schrieb:

    Generell musst Du in der Mathematik in erster Linie 2 Dinge lernen: Zum einen musst Du rechnen lernen, zum anderen musst Du Dir Wissen über die mathematischen Strukturen aneignen.

    Kannst du den zweiten Punkt ein wenig genauer erläutern? Ich bin auch nicht der Meinung, dass man nur rechnen lernen soll, aber das Gefühl für die Mathematik (was du womöglich als Struktur bezeichnest?) erhält man nicht durch theoretische Beweise. Erst durch die Anwendung der Mathematik erkennt man, wie die Mathematik aufgebaut ist. Es ist doch immer so, das beste Theoriebuch hat viele praktische Beispiele.

    Naja, Aufgaben rechnen zu können ist ja ganz schön und gut. Das bringt Dich weiter, wenn Du Aufgaben zum Rechnen hast. Strukturverständnis ist für mich etwas abstrakteres. Bleiben wir als Anwendungsbeispiel mal bei der Fourieranalysis. "Aufgaben rechnen" heißt in dem Fall, eine Fouriertransformation durchführen zu können. Strukturverständnis heißt in dem Fall für mich, die Dualität zwischen Frequenzraum und Ortsraum zu verstehen. Zu verstehen, was man in welchem der beiden Räume wie machen kann. Es geht halt darum, die Struktur zu sehen und von dem Niveau "ich kann Aufgaben lösen" zu dem Niveau "Ich kann diese abstrakte Struktur in meinen Anwendungsgebieten erkennen, sie darauf abbilden und mir für meine Problemstellungen in den Anwendungsgebieten Lösungsstrategien auf Basis meines Strukturverständnisses erarbeiten" zu kommen. Bei dem Strukturverständnis geht es also darum, davon weg zu kommen, Aufgaben zu lösen, die einem gestellt werden und dazu zu kommen, sich die Aufgaben selbst zu suchen.

    Das ist zumindest das, was ich in dem Zusammenhang als Strukturverständnis sehe. Teilweise hat das durchaus eine ganze Menge mit Erfahrung zu tun. Aber zum Strukturverständnis können auch Beweise beitragen, da diese natürlich die Struktur nutzen. Und in der Beweisführung hat man dann doch schonmal Aha-Erlebnisse, bezüglich der Struktur. Was ich sagen will ist, dass bei den Beweisen durchaus auch Erkenntnisse entstehen, die über "Aha, der Satz ist also tatsächlich richtig" hinausgehen. Praktisch als Abfallprodukt. Und andersherum geht das natürlich auch: Wenn Du die Strukturen gut kennst und mit ihnen denken kannst. Dann sind Beweise oft eine Trivialität.

    Strukturverständnis ist für "mathematische Modellierung" nötig. Eigentlich denkt man bei dem Begriff immer an Angewandte Mathematik und assoziiert jeden Mist damit. Aber wenn Du Dir den Begriff mal auf der Zunge zergehen lässt, dann ist das etwas enorm schweres. Den Bezug zwischen Problemen in Anwendungsgebieten und mathematischen Strukturen herzustellen, erfordert einfach enorm viel. Wenn Du das drauf hast, dann kannst Du wissenschaftliche Geschichte schreiben. ...naja, das ist zumindest eine Grundvoraussetzung dafür.


Anmelden zum Antworten