Warum enthält ein Informatikstudium soviel Mathe?



  • Dravere schrieb:

    Gregor schrieb:

    Generell musst Du in der Mathematik in erster Linie 2 Dinge lernen: Zum einen musst Du rechnen lernen, zum anderen musst Du Dir Wissen über die mathematischen Strukturen aneignen.

    Kannst du den zweiten Punkt ein wenig genauer erläutern? Ich bin auch nicht der Meinung, dass man nur rechnen lernen soll, aber das Gefühl für die Mathematik (was du womöglich als Struktur bezeichnest?) erhält man nicht durch theoretische Beweise. Erst durch die Anwendung der Mathematik erkennt man, wie die Mathematik aufgebaut ist. Es ist doch immer so, das beste Theoriebuch hat viele praktische Beispiele.

    Naja, Aufgaben rechnen zu können ist ja ganz schön und gut. Das bringt Dich weiter, wenn Du Aufgaben zum Rechnen hast. Strukturverständnis ist für mich etwas abstrakteres. Bleiben wir als Anwendungsbeispiel mal bei der Fourieranalysis. "Aufgaben rechnen" heißt in dem Fall, eine Fouriertransformation durchführen zu können. Strukturverständnis heißt in dem Fall für mich, die Dualität zwischen Frequenzraum und Ortsraum zu verstehen. Zu verstehen, was man in welchem der beiden Räume wie machen kann. Es geht halt darum, die Struktur zu sehen und von dem Niveau "ich kann Aufgaben lösen" zu dem Niveau "Ich kann diese abstrakte Struktur in meinen Anwendungsgebieten erkennen, sie darauf abbilden und mir für meine Problemstellungen in den Anwendungsgebieten Lösungsstrategien auf Basis meines Strukturverständnisses erarbeiten" zu kommen. Bei dem Strukturverständnis geht es also darum, davon weg zu kommen, Aufgaben zu lösen, die einem gestellt werden und dazu zu kommen, sich die Aufgaben selbst zu suchen.

    Das ist zumindest das, was ich in dem Zusammenhang als Strukturverständnis sehe. Teilweise hat das durchaus eine ganze Menge mit Erfahrung zu tun. Aber zum Strukturverständnis können auch Beweise beitragen, da diese natürlich die Struktur nutzen. Und in der Beweisführung hat man dann doch schonmal Aha-Erlebnisse, bezüglich der Struktur. Was ich sagen will ist, dass bei den Beweisen durchaus auch Erkenntnisse entstehen, die über "Aha, der Satz ist also tatsächlich richtig" hinausgehen. Praktisch als Abfallprodukt. Und andersherum geht das natürlich auch: Wenn Du die Strukturen gut kennst und mit ihnen denken kannst. Dann sind Beweise oft eine Trivialität.

    Strukturverständnis ist für "mathematische Modellierung" nötig. Eigentlich denkt man bei dem Begriff immer an Angewandte Mathematik und assoziiert jeden Mist damit. Aber wenn Du Dir den Begriff mal auf der Zunge zergehen lässt, dann ist das etwas enorm schweres. Den Bezug zwischen Problemen in Anwendungsgebieten und mathematischen Strukturen herzustellen, erfordert einfach enorm viel. Wenn Du das drauf hast, dann kannst Du wissenschaftliche Geschichte schreiben. ...naja, das ist zumindest eine Grundvoraussetzung dafür.



  • Dravere schrieb:

    Ich bin auch nicht der Meinung, dass man nur rechnen lernen soll, aber das Gefühl für die Mathematik (was du womöglich als Struktur bezeichnest?) erhält man nicht durch theoretische Beweise. Erst durch die Anwendung der Mathematik erkennt man, wie die Mathematik aufgebaut ist. Es ist doch immer so, das beste Theoriebuch hat viele praktische Beispiele.

    du willst also praxis ohne theorie? ich kann dir nicht folgen.
    was willst du anwenden, wenn du die theorie nicht verstanden hast?
    großes einmaleins, prozentrechnen und papierflieger zählt nicht.

    Dravere schrieb:

    Wenn mehr als 50% der Studenten durchfallen, dann stimmt etwas am System nicht.

    ups, das war ich! ich habe im haupstudium nur eine klausur beim ersten mal bestanden, und jetzt rate mal wieso?



  • mezzo mix schrieb:

    Dravere schrieb:

    Wenn mehr als 50% der Studenten durchfallen, dann stimmt etwas am System nicht.

    ups, das war ich! ich habe im haupstudium nur eine klausur beim ersten mal bestanden, und jetzt rate mal wieso?

    Du hast nicht gelernt, weil Du einfach erstmal sehen wolltest, was bei der Prüfung auf Dich zukommt? 😋

    Bei uns sind damals glaube ich in _jeder_ Prüfung mehr als 50% der Studenten durchgefallen. Und ich sehe auch nicht, warum das plötzlich ein Problem sein sollte. Das ist ja keine Modeerscheinung, sondern war immer so. Es gibt viele Gründe, warum Leute nicht für eine Prüfung vorbereitet sind. Aber spätestens beim 2. oder 3. mal haben dann doch sehr viele den Stoff drauf.



  • Gregor schrieb:

    mezzo mix schrieb:

    Dravere schrieb:

    Wenn mehr als 50% der Studenten durchfallen, dann stimmt etwas am System nicht.

    ups, das war ich! ich habe im haupstudium nur eine klausur beim ersten mal bestanden, und jetzt rate mal wieso?

    Du hast nicht gelernt, weil Du einfach erstmal sehen wolltest, was bei der Prüfung auf Dich zukommt? 😋

    ey, erst melden, bevor du anderer leute fragen beantwortest. 🤡

    Gregor schrieb:

    Aber spätestens beim 2. oder 3. mal haben dann doch sehr viele den Stoff drauf.

    für den dritten war ich damals nicht cool genug 😉


  • Administrator

    Gregor schrieb:

    Den Bezug zwischen Problemen in Anwendungsgebieten und mathematischen Strukturen herzustellen, ...

    Aber genau das lernt man doch nicht mit Beweisführung. Gerade die Beweise befinden sich immer nur auf mathematischer Seite und nehmen überhaupt keinen Bezug zur Realität und einem Anwendungsgebiet. Zumindest sahen bei uns so die Beweise aus. Wir haben das nie anhand eines Anwendungsgebietes gemacht, immer nur abstrakt, immer nur Mathematik. Reale Anwendungsbeispielen gab es in der Mathematik nie. Es war nur Theorie und mehr nicht.

    Genau aus diesem Grund finde ich es eben gut, wenn man die Theorie mit der Praxis lernt. Zum Beispiel die Fouriertransformation in der Vorlesung Graphische Informatik reinnimmt oder sowas. Dann kann man die Theorie dazu erklären, aber gleichzeitig immer wieder einen Bezug zu realen Problemen herstellen.

    Gregor schrieb:

    Bei uns sind damals glaube ich in _jeder_ Prüfung mehr als 50% der Studenten durchgefallen. Und ich sehe auch nicht, warum das plötzlich ein Problem sein sollte. Das ist ja keine Modeerscheinung, sondern war immer so. Es gibt viele Gründe, warum Leute nicht für eine Prüfung vorbereitet sind. Aber spätestens beim 2. oder 3. mal haben dann doch sehr viele den Stoff drauf.

    Tja, bei uns sind auch beim 2. Mal immer noch 80% durchgefallen. Und sie haben beide Male extrem gelernt, weil alle extreme Angst vor der Prüfung hatten. Da wurden auch ganze Lerngruppen organisiert mit Unterstützung von den Assistenten, welche übrigens, dass muss man wirklich sagen, einen sehr tollen Job geleistet haben. Zu einem 3. Mal kam es bei den Leuten nicht, da man diese Matheprüfungen nicht ein 3. Mal wiederholen durfte.

    Grüssli



  • Dravere schrieb:

    Tja, bei uns sind auch beim 2. Mal immer noch 80% durchgefallen. Und sie haben beide Male extrem gelernt, weil alle extreme Angst vor der Prüfung hatten.

    wenn man sich zum zweiten mal anmeldet, und dann durchfällt, hat man was falsch gemacht. und daß jetzt ALLE die super-prüfungsangst haben, nehm ich dir auch nicht ab. und ja, die 80% sind dann halt die, die zu gehen haben. das ist auch nichts neues.
    vielleicht haben deine kommilitonen ja auch ALLE nur extreeem das falsche gelernt? du versuchtst dich hier zu rechtfertigen. meine herren, werden wir nicht ALLE IMMER ungerecht behandelt?



  • Dravere schrieb:

    Gregor schrieb:

    Den Bezug zwischen Problemen in Anwendungsgebieten und mathematischen Strukturen herzustellen, ...

    Aber genau das lernt man doch nicht mit Beweisführung. Gerade die Beweise befinden sich immer nur auf mathematischer Seite und nehmen überhaupt keinen Bezug zur Realität und einem Anwendungsgebiet. Zumindest sahen bei uns so die Beweise aus. Wir haben das nie anhand eines Anwendungsgebietes gemacht, immer nur abstrakt, immer nur Mathematik. Reale Anwendungsbeispielen gab es in der Mathematik nie. Es war nur Theorie und mehr nicht.

    Um einen Bezug zwischen Anwendung und mathematischen Strukturen herstellen zu können, muss man die mathematischen Strukturen erstmal kennen. Wie schon gesagt: Das hat etwas mit Erfahrung zu tun und bei Beweisführungen können auch Erkenntnisse über die Struktur entstehen.

    Ich glaube, das schätzt Du falsch ein. Mathematische Modellierung kann man nicht wirklich lehren. Und es kommen auch nur ganz wenige da hin, dass sie in der Lage sind, mathematische Modellierung betreiben zu können. Da gehört noch wesentlich mehr zu, als etwas zu beweisen. Letztendlich muss man sich dafür sowohl in der Mathematik als auch im Anwendungsgebiet richtig gut auskennen.



  • mezzo mix schrieb:

    für den dritten war ich damals nicht cool genug 😉

    👍



  • das ganze Zeugs wie Ableiten und Integrieren?

    In der Regel reicht hier ein Grundverständnis.



  • Gregor schrieb:

    Mathematische Modellierung kann man nicht wirklich lehren.

    BTW: Ein recht einfaches Beispiel bezüglich Modellierung ist das Kind am Fenster Problem. Da brauchst Du praktisch noch kein wirkliches strukturelles Wissen, das Problem ist sehr leicht überschaubar und man hat nur sehr wenige Möglichkeiten der Modellierung. Wie Du allerdings an der Länge des Threads siehst, ist das aber schon eine Problemstellung, bei der viele mit der Modellierung falsch liegen. 😋



  • Gregor schrieb:

    Ein recht einfaches Beispiel bezüglich Modellierung ist das Kind am Fenster Problem. ... Wie Du allerdings an der Länge des Threads siehst, ist das aber schon eine Problemstellung, bei der viele mit der Modellierung falsch liegen.

    Wow, das ist schon erstaunlich, wie viele Leute bei der Aufgabe auf die Lösung "1/2" kommen, obwohl die Erklärung aus dem Buch ja schon zeigt, wie man auf die richtige Lösung "2/3" kommt. 🙂



  • empgodot schrieb:

    Gregor schrieb:

    Ein recht einfaches Beispiel bezüglich Modellierung ist das Kind am Fenster Problem. ... Wie Du allerdings an der Länge des Threads siehst, ist das aber schon eine Problemstellung, bei der viele mit der Modellierung falsch liegen.

    Wow, das ist schon erstaunlich, wie viele Leute bei der Aufgabe auf die Lösung "1/2" kommen, obwohl die Erklärung aus dem Buch ja schon zeigt, wie man auf die richtige Lösung "2/3" kommt. 🙂

    Und darüber diskutieren sie 88 Seiten. Wahnsinn.



  • empgodot schrieb:

    Gregor schrieb:

    Ein recht einfaches Beispiel bezüglich Modellierung ist das Kind am Fenster Problem. ... Wie Du allerdings an der Länge des Threads siehst, ist das aber schon eine Problemstellung, bei der viele mit der Modellierung falsch liegen.

    Wow, das ist schon erstaunlich, wie viele Leute bei der Aufgabe auf die Lösung "1/2" kommen, obwohl die Erklärung aus dem Buch ja schon zeigt, wie man auf die richtige Lösung "2/3" kommt. 🙂

    Jetzt fang hier mal keinen neuen Flame um das Thema an. Wenn man etwas nachdenkt, sollte jedem klar sein, dass 1/2 die richtige Lösung ist und das Buch einfach falsch liegt. 😋 Andererseits zeigt das wieder die Schwierigkeit der Modellierung. Auch hier schaffen falsche Modelle schon den Weg in Bücher.



  • Gregor schrieb:

    BTW: Ein recht einfaches Beispiel bezüglich Modellierung ist das Kind am Fenster Problem. Da brauchst Du praktisch noch kein wirkliches strukturelles Wissen, das Problem ist sehr leicht überschaubar und man hat nur sehr wenige Möglichkeiten der Modellierung.

    Es sind einfach nicht genug Daten gegeben, um viel darüber sagen zu können. Die Aufgabe ist nicht eindeutig.
    Wenn man ein wenig Drumherum abschält und ein wenig umformuliert, kommt man zu einem einfacheren Problem, das auch von verschiedenen Rätslern anders gelöst wird: "Herr Genscher hat ein Kind. Mit welcher Wahrscheinlichkeit ist es ein Junge".
    Das Ansatz "Wenn ich nichts über Genscher weiß, nehme ich am besten mal 50%" ist umstritten.


  • Mod

    volkard schrieb:

    Das Ansatz "Wenn ich nichts über Genscher weiß, nehme ich am besten mal 50%" ist umstritten.

    Das ist im allgemeinen Fall nicht nur umstritten sondern falsch. Aber aus der Aufgabenstellung ist eigentlich klar, dass hier mit Junge/Mädchen zwei gleichwahrscheinliche Ereignisse ohne dritte Möglichkeit gemeint sind. Soviel Metadenken zum Verständnis der Aufgabe sollte man bei einem Studenten schon voraussetzen können (das siebt dann auch die Klugscheißer aus, die dann mit der empirischen W'keit 52,5 % für Jungen ankommen).

    Die mathematisch korrekt formulierte Aufgabenstellung (einfach nur mit W'keiten, Ereignissen und Stichproben formuliert) klingt nun einmal viel langweiliger als die ausgeschmückte Version mit Kindern und Fenstern. Und außerdem würde dann der Aha-Effekt entfallen, denn zu dem rein abstrakten Problem hat man keine Intuition und würde einfach rechnen, wohingegen man bei der Kinderaufgabe erstmal schätzt was wohl rauskommt. Und je nachdem wie gut man in Mathe ist, ist das häufig erstmal das falsche. Und dann behält man die Lehre aus der Aufgabe viel leichter im Gedächtnis als bei einer rein abstrakten Aufgabenstellung.

    Ich finde die Aufgabe gut 👍 .

    Und um den Thread nochmal ordentlich anzuheizen: Man bekommt neue Nachbarn, eine Familie mit zwei Kindern. Nun sagt einem die neue Nachbarin, dass ihr ältestes Kind ein Junge ist. Wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?



  • SeppJ schrieb:

    Und um den Thread nochmal ordentlich anzuheizen: Man bekommt neue Nachbarn, eine Familie mit zwei Kindern. Nun sagt einem die neue Nachbarin, dass ihr ältestes Kind ein Junge ist. Wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?

    Im verlinkten Artikel steht aber
    "Man bekommt neue Nachbarn, eine Familie mit zwei Kindern. Nun sieht man am Fenster einen Jungen stehen, wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?"
    Die ist mir unbestimmt, weil man viele Annahmen darüber anstellen kann, welches der Kinder am Fenster steht.

    Deine hingegen ist klar bestimmt (mit ganz wenig Meta-Zeug). Das Geschlecht des älteren Kindes ist völlig belanglos, das Geschlecht des jüngeren Kindes wird unabhängig davon gewürfelt.

    Kleinlich werden sollte man nicht bei den 52,5% oder so werden, sondern bei "Wahrscheinlichkeit". Die Wahrscheinlichkeit ist eine Größe, die in die Zukunft schaut. In die Vergangenheit schauend, ist es eher die relative Häufigkeit. Und die schätzt man nicht so ab, sondern stellt sie fest, indem man mißt. Bei nur einer Familie kommt dann 0% oder 100% raus, aber niemals 50%. Das stört bei der Aufgabenstellung aus dem Thread auch viel stärker als bei Deiner.


  • Mod

    😕 Was ist denn bei der anderen Aufgabe unklar? Man sieht eines der Kinder. Welches, ist in der Aufgabe absichtlich unbestimmt gelassen. Das ist ja gerade das besondere, dass man dann eine andere W'keit herausbekommt, dass das zweite Kind ein Mädchen ist, als in meiner leicht abgewandelten Aufgabe. Das ist ja gerade der ganze Sinn der Aufgabe!

    (Ich habe jetzt den anderen Thread nicht ganz durchgelesen 😉 , ich hoffe doch, dass man dort zu der Lösung 1/3 gekommen ist?)

    Was das 0%/100% Problem angeht: Vielleicht solltest du dir mal die Interpretation des Wahrscheinlichkeitsbegriffs durch Herrn Bayes ansehen, wenn du Probleme mit dem Wahrscheinlichkeitsbegriff für zukünftige Ereignisse hast.



  • SeppJ schrieb:

    Ich habe jetzt den anderen Thread nicht ganz durchgelesen 😉

    Tu es. Dann brauche ich die Argumente nicht hier zu wiederholen. Oder poste dort, daß Du der Meinung bist, daß 1/3 rauskommt.

    Die letzten Postings sind nicht der Konsens, denn viele haben mehr oder weniger früh ohne Konsens die Geduld verloren und sind ausgestiegen.



  • volkard schrieb:

    Die ist mir unbestimmt, weil man viele Annahmen darüber anstellen kann, welches der Kinder am Fenster steht.

    Du meinst, man kann die Aufgabe nicht eindeutig mathematisch modellieren? Ich meine, die Situation, die da beschrieben ist, ist doch durchaus eindeutig nachvollziehbar. Jeder kann sie sich vorstellen. Das einzige Problem ist jetzt, wie sie interpretiert wird. Wie also die Abbildung auf die Mathematik gemacht wird. Mathematische Modellierung ist schwierig, in der Stochastik ist sie auch schon bei einfachen Problemstellungen stark verwirrend. Und das, obwohl in der Stochastik einfach nur eine Abbildung des Problems auf einen bestimmten Aufgabentyp gesucht wird. Hier geht es nichtmal darum, das Problem auf eine große mathematische Struktur abzubilden. Um es mal übertrieben auszudrücken: Man muss hier eben nicht die Quantenmechanik auf die Mathematik abbilden.

    Ok, Du kannst jetzt sagen, dass man bei der Problemstellung Annahmen darüber machen kann, welches Kind aus dem Fenster sieht. Man muss sich eben genau überlegen, welche Annahmen bei einer mathematischen Modellierung richtig und welche falsch sind. Ich sehe erstmal nicht, wie aus der eindeutig beschriebenen Situation mehrere "richtige" Modellierungen entstehen können. Das Problem ist eben, dass sich viele über die richtigen Annahmen im unklaren sind. Und es ist nicht leicht einsichtig, ob man eine bestimmte Annahme machen darf oder nicht.



  • SeppJ schrieb:

    Und um den Thread nochmal ordentlich anzuheizen: Man bekommt neue Nachbarn, eine Familie mit zwei Kindern. Nun sagt einem die neue Nachbarin, dass ihr ältestes Kind ein Junge ist. Wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?

    Das führt doch zu genau demselben Modell. Es ist völlig egal, ob Kind 1 das ältere ist, oder das, das man am Fenster sieht. Es ist jedesmal ein bestimmtes Kind.


Anmelden zum Antworten