integral



  • hallo
    vorab, ich bin mathe-noob.

    also ich weiss wie man das berechnet wenn man den integral von einem bereich einer funktion berechnen möchte. da stehen dann so oben und unten dieses geschwungenen zeichens (hat das einen bestimmten namen?) die grenzen und hinten dran die funktion, deren stammfunktion es zu bestimmen gilt wenn man integrieren möchte.

    nun habe ich aber mal gesehen, dass nur unterhalb dieses geschwungenen zeichens etwas gestanden ist (oben also nichts). was bedeutet das denn? von welchem bereich wird die fläche berechnet? und wie rechnet man das dann aus?

    mfg


  • Mod

    Du meinst das Integralzeichen?

    Wenn die Beschriftung nicht streng nach schulmathematischer Schreibweise erfolgt, dann wird normalerweise angenommen, dass der Leser sich aus dem Zusammenhang erschließen kann, worum es genau geht. Üblich sind zum Beispiel:
    Gar nichts dranschreiben: Es ist die allgemeine Stammfunktion gesucht oder das Integral geht über den ganzen Definitionsbereich.
    Nur unten was dranschreiben: Dann ist das was dransteht keine Grenze, sondern eine Angabe für einen Bereich. Häufiges Beispiel hierfür ist beispielsweise Cfds\int_{C} f \text{d}s. Dann ist mit C irgendeine Kurve gemeint (deren Natur sich aus dem Zusammenhang ergibt) und das Integral geht dann vollständig über diese Kurve.

    und wie rechnet man das dann aus?

    Das kann man nicht so einfach erklären. Kommt auch stark drauf an. Im Prinzip kann das beliebig kompliziert werden und oft ist man auch gar nicht an einem konkreten Ergebnis interessiert. Bei dem (noch relativ einfachen) Beispiel oben mit einer 1D-Kurve würde man die Kurve parametrisieren. D.h. man formuliert eine Funktion f(t), die für t von 0 bis 1 dieser Kurve folgt, nutzt die Substitutionsregel und integriert dann von 0 bis 1. Oder vielleicht auch nicht, weil's viel einfacher geht oder weil es so einfach gar nicht geht. Das wäre das Thema einer akademischen Vorlesung in angewandter Mathematik, wenn man alles erklären wollte.

    Ganz allgemein mit Alltagsworten formuliert: Ein Integral geht über irgendein Gebilde. Das was man an das Integralzeichen dranschreibt, beschreibt dieses Gebilde für den Leser. Zum Beispiel wie in der Schule mit unterer und oberer Grenze, aber wenn das nicht möglich ist, dann muss man es eben anders schreiben. Eventuell kann man sogar nur den Namen des Gebildes schreiben und muss woanders erklären, was damit genau gemeint ist. Wie das konkret zu rechnen ist (wenn überhaupt), kommt jeweils drauf an.



  • das ist schonmal recht verständlich, danke


Anmelden zum Antworten