Differentialgeometrie
-
Ich möchte ja nichts beschönigen, mit meinen zwei Vordiplomen, habe aber an die Universitäten andere Erwartungen gestellt. An der Uni lernt man den Umgang mit Differentialgleichungen, verschiedene Fächer, aber die eigentlichen Grundlagen nicht ! Was bedeutet das Gleichheitszeichen ? ( Gut Unifikation - Prolog ) was bedeutet eine Addition ? Woher kommen die Begriffe: "Energie" "Masse" "Zeit" "Raum" ? Hat die irgendjemand eingeführt ? Woher kommen die ? Ich denke, dass da höhere Mächte im Spiel sind, Gott ?
-
also im lehrplan stand immer etwas von "präsenzzeit" und dann noch etwas von "eigenleistung". angeblich bedeutet letzteres, dann man sich bspw. in die bibliothek begibt und sich da wissen aneignet, das außerdem auch noch interessant sein könnte. alternativ kann man diese eigenleistung natürlich auch in der mensa oder mit der wasserpfeife verbringen, aber eigentlich ist das dann kein studium (gesellschaftswissenschaften ausgenommen).
-
@biter sagte in Differentialgeometrie:
Ich möchte ja nichts beschönigen, mit meinen zwei Vordiplomen, habe aber an die Universitäten andere Erwartungen gestellt. An der Uni lernt man den Umgang mit Differentialgleichungen, verschiedene Fächer, aber die eigentlichen Grundlagen nicht ! Was bedeutet das Gleichheitszeichen ? ( Gut Unifikation - Prolog ) was bedeutet eine Addition ? Woher kommen die Begriffe: "Energie" "Masse" "Zeit" "Raum" ? Hat die irgendjemand eingeführt ? Woher kommen die ? Ich denke, dass da höhere Mächte im Spiel sind, Gott ?
Die Axiome der Mathematik sind nicht willkürlich definiert worden, sondern aus mathematisch philosophischen Gründen, die Dir mit dem Wissen aus dem Grundstudium wohl nicht nachvollziehbar erscheinen können. Z.B. wird die Menge IR mittlerweile axiomatisch eingeführt und nicht mehr IN. Man kann auch mit IN alles in der Mathematik herleiten (so hat man das früher gemacht), nur wird das ganze deutlich unschöner. Und der Grund weshalb man das geändert hat ist das „unschön“. Es gibt dazu spezielle Literatur, die sich mit den philosophischen Gedanken zur Mathematik befasst.
Was die Physik und die Naturwissenschaften betrifft. Hier kann man nichts axiomatisch einführen, sondern man beobachtet Ereignisse und versucht Hypothesen aufzustellen und falsifiziert diese in Experimente. Zum philosophischen Verständnis der Naturwissenschaften ist „Karl Popper, Logik der Forschung“ meines Erachtens noch immer das wichtigste Buch. Es sollte sich mit dem Wissen aus dem Grundstudium Physik relativ leicht lesen lassen. Für Philosophen gibt es üblicherweise die Version für „Dummies“, die kann man sich gleich ersparen, denn die taugt rein gar nichts. Es gibt die Ausgabe von Mohr Siebeck PB ISBN 978-3161484100 für € 39,- und HC ISBN 978-3161481116 für €99,-, die Paperback Version ist ordentlich verarbeitet und meines Erachtens ausreichend. Wer also kein Forschungsarbeit betreibt und das Buch ständig benötigt kommt mit der PB Version aus. All die anderen Ausgaben sind entweder gekürzt oder Interpretationen bzw. die englische Ausgabe des Buchs.
-
Aber welcher Mathematiker, Philosoph hat denn den Begriff der Menge eingeführt ? Und damit das kartesische Produkt, die Relationen und Funktionen ? Wie heisst der ? Wenn die Mathematik nicht willkürlich definiert worden ist, wo liegen die Gründe hierfür ? Woher nimmt man die "Gründe" ? Wer stützt sich auf die Gründe, woher kommen die Gründe ?
-
Und nochmals, wer hat den Begriff der Energie, und und und, eingeführt ? Wie heisst der oder die ? Die physikalischen Grössen können doch nicht durch Zufall entstanden sein ? Die sind ja ziemlich erfolgreich. Also ich habe nur die Vordiplome, Du hast womöglich recht mit dem Grundstudium.
-
Und wenn man Theorien durch Experimente belegt, dann müssen die Definition der enthaltenen Grössen bekannt sein. Eine Theorie: F = m * a, da müssen es die Grössen Kraft, Masse und Beschleunigung bekannt sein. Dann müsste für die Grösse Kraft auch eine Hypothese gefunden worden sein, die die Grösse Kraft einführt. Wie wollte man elementare Grössen wie Energie, Masse mit Hypothesen einführen ? Mit welchen Experimenten wollte man diese, wenn sie noch isoliert da stehen, glaubhaft machen. Also für meinen Teil: ich bin ein Creationist !
-
@biter sagte in Differentialgeometrie:
Und nochmals, wer hat den Begriff der Energie, und und und, eingeführt ? Wie heisst der oder die ?
ist das so schwer, sowas bei wikipedia nachzuschlagen?
energie: thomas young (https://de.wikipedia.org/wiki/Energie#Geschichte_des_Begriffs)
-
Ja aber irgendwelche physikalische Grössen müssen ja die ersten gewesen sein, die konnten sich nicht auf Beziehungen mit anderen stützen. Ja Ok auch der Mengenbegriff wurde von einem Mathematiker eingeführt. Vielleicht habe ich mich da etwas verrannt ... Trotzdem ich glaube, dass die neuen Begriffe von Mathematikern, die denen eingefallen sind, Ideen von oben waren. Und wenn Mathematiker Ideen gehabt haben, mit denen sich auch noch Physik machen lässt, dann macht mich das stutzik ...
-
Ja aber nochmals, was ist denn eine Gleichheit, und eine Addition, die man bei der Mathematik und Physik verwendet. Man kann damit unbeschwert umgehen, aber die Hintergründe ? Wenn sich damit auch Physik machen lässt, dann gab es diese schon seit Anbeginn des Universums und wurde nicht von uns eingeführt !
-
Also *john 0 entschuldige die Frechheit, aber mich interessiert dann doch eine Antwort von Dir, zu meinen letzten zwei Fragen. Gleichheit hat mit Äquivalenzrelation, und Addition mit Zählen zu tun. Haben wir das erfunden, oder eine höhere Macht ? Weitere Hintergründe ?
-
@biter sagte in Differentialgeometrie:
Also *john 0 entschuldige die Frechheit, aber mich interessiert dann doch eine Antwort von Dir, zu meinen letzten zwei Fragen. Gleichheit hat mit Äquivalenzrelation, und Addition mit Zählen zu tun.
Dazu musst Du entsprechende Literatur konsultieren. Eine gut sortierte UB sollte weiterhelfen zumindest die notwendigen Titel herauszufinden. Allgemein solltest Du Dich mit Erkenntnistheorie auseinander setzen.
Haben wir das erfunden, oder eine höhere Macht ? Weitere Hintergründe ?
Ich hatte Dir schon einen extrem wichtigen Buchtitel genannt. Lesen und verstehen wo die Grenzen des Wissens sind.