Integration über Mannigfaltigkeiten



  • Hallo zusammen, mal wieder. Zur Zeit beschäftige ich mit Integration über Mannigfaltigkeiten, und hätte da mal gerne konkrete Beispiele gelesen. zB die Bestimmung der Kugeloberfläche der Einheitssphäre. Ich habe grundlegende Kenntnisse über den Begriff der Mannigfaltigkeit. Mich interessieren jetzt vor allem Anwendungen. Weiss jemand Links bzw Bücher, über Anwendungen. Suche im Internet schon seit Tagen. Weiss jemand Rat ? Danke im Voraus !



  • Hallo biter,

    wenn du eine Anwendung suchst dann hätte ich die Arbeit von Jacob Wenzel. Er hat ein Raytracingverfahren entwickelt, welches über Manigfaltigkeiten integriert.

    https://dl.acm.org/doi/10.1145/2185520.2185554



  • Die Anwendung hätte ich gerne, um ein grundlegendes Verständnis zu gewinnen. Wie berechne ich die Kugeloberfläche ? Wenn M, die Kugeloberfläche, eine Mannigfaltigkeit ist, und ich diese als Vereinigung von Mengen K i darstelle, und es für jedes K i eine Karte gibt die ich mit einer Parametrisierungfunktion zuordne, wie komme ich dann zur Kugeloberfläche ? Die Menge der Karten nennt man Atlas. Muss ich dann über die Flächen der Karten summieren ? Wie wählt man die K i ? Müssen diese die Kugel "genau" überdecken ? Da fällt mir ein, dass man da eine "Funktion" über der Kugeloberfläche integrieren will, so sieht die Sache ganz anders aus ! Trotzdem ein paar Beispiele wären geschickt. XMAMan deinen Link schau ich mir noch an. Danke ! Wollte man die Kugeloberfläche berechnen, wählte man die Konstanten-Funktion f(x) = 1.



  • @biter sagte in Integration über Mannigfaltigkeiten:

    Mich interessieren jetzt vor allem Anwendungen. Weiss jemand Links bzw Bücher, über Anwendungen.

    Ich kann dir bezüglich Mannigfaltigkeiten leider nicht helfen.

    Wohl aber beschäftige ich mich privat mit der Chaos Forschung bzw. dynamischen Systemen. Und dort tauchen Mannifaltigkeiten auf.

    Folgende Bücher habe ich unter anderem gekauft:
    Gewöhnliche Differentialgleichungen
    Chaos A Program Collection for the PC

    Beide Bücher sind auf Uni-Niveau und gerade das letzte Buch ist keine leichte Kost. So finden sich in dem Buch ähnliche Bilder wie in dem folgenden Paper :

    Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models

    Und ich möchte diese verstehen und nachprogrammieren.



  • Bücher habe ich mehrere, auf Uni-Niveau, die kann ich zwar verstehen, aber es ist dermassen mühselig. Wenn ich mich irgendwo einarbeiten möchte, brauche ich zuerst einfache Beispiele, und dann Verfeinerungen. Und nicht gleich die detailierte Theorie. Und bei Mannigfaltigkeiten eben vor allem geometrische, anschauliche Erklärungen. Danke Euch !!!


Anmelden zum Antworten