Problem bei Hausübung



  • Hallo,

    ich soll als Hausübung die lokalen Extrema der Funktion

    f(x) = (x^3 - 4x^2 - 8x - 😎 * e^x

    bestimmen. Normal kein Problem. Habe auch schon die erste Ableitung gebildet:

    f'(x) = (x^3 - x^2 - 16x - 16) * e^x

    Aber da komme ich beim Nullsetzen nicht sehr weit:

    0 = x^3 - x^2 - 16x - 16

    Und da bin ich mit meinem Latein am Ende... habe ich mich schon vorher verrechnet oder muss ich da tatsächlich irgend ein dummes Verfahren zur Lösung von Polynomen 3. Grades benutzen (von denen ich noch nie was gehört habe und die wir in der Vorlesung auch bestimmt noch nicht hatten)?



  • Unfug! Danke an TomasRiker. hab bei 16*x anstatt 4 einfach ne 2 eingesetzt



  • Die Ableitung stimmt.
    Habe es mal mit Derive ausgerechnet, und die Lösungen sind ziemlich schräge Zahlen. Man könnte z.B. das Newton-Verfahren anwenden, um die Nullstellen zu finden.



  • Griffin schrieb:

    also ich hab schonmal eine Nullstelle bei x=4

    Da kommt aber -32 raus, nicht null.
    64 - 16 - 64 - 16 = -32

    Die Lösungen sind:
    x = -1.196557593 oder x = 4.916381551 oder x = -2.719823957



  • Mal ne ganz blöde Frage:
    Bist Du sicher, daß Du die Aufgabe richtig abgeschrieben hast?
    Wenn man zum Beispiel aus -8 +8 macht, werden die Lösungen viel freundlicher.
    Ansonsten gibt es auch Lösungsverfahren für Polynome 3. und 4. Grades. Heißen Cardano-Formeln. Sind aber sehr sehr unpraktisch. Damit kriegst Du die Werte jedenfalls exakt mit Wurzeln und so, nicht als Kommazahlen.

    MfG Jester



  • Bitte aussagekräftige Überschriften wählen. Danke!



  • Wo ist denn das Problem, so was lässt man ganz easy seinen Taschenrechner lösen... :p Ach die sind ja an der Uni verboten, so ein Pech aber auch 😉 Macht sicher unheinmlich viel Sinn, solche Sachen per Hand zu lösen, [ironie] da kann man ja gleich mal zeigen was man drauf hat 😃 [/ironie]



  • Abgeschrieben habe ich sie nicht falsch. Habe ich sogar nochmal aus dem Internet runtergeladen ums zu kontrollieren. Aber ich denke, die haben einen Fehler in der Aufgabe drin. Das kann so nicht gewollt sein!


Anmelden zum Antworten