@Tobsen
-
die funktion hat eine nullstelle bei x=0: d.h. 0 ist das richtige ergebnis, wenn du negative funktionswerte beim integrieren negativ behandelst, weil die funktion symmetrisch ist.
??? Bitte um Erklärung (mit Bildchen )
-
das ist soweit ich es sehe das gleiche wie mein 1/(-12+9x²)?
dann ist 0 schon korrekt.
-
Original erstellt von Tobsen:
**die funktion hat eine nullstelle bei x=0: d.h. 0 ist das richtige ergebnis, wenn du negative funktionswerte beim integrieren negativ behandelst, weil die funktion symmetrisch ist.??? Bitte um Erklärung (mit Bildchen )**
\ | \ | \ | \ | \| -----|----- |\ | \ | \ | \ | \
für -1..1 -> 0!
-
das bild ist natürlich für f(x)=-x und nicht für deine funktion, aber es spielt nur eine rolle, dass die funktion gerade (d.h. der graph achsensymmetrisch zur yachse ist)
-
ok danke! Darf ich dich noch mit weiteren Aufgaben nerven?
-
\ | .\ | ..\ | .A.\ | ....\| -----|----- |\ |.\ |..\ |.B.\ |....\
die fläche A ist genauso groß wie die fläche B, aber B liegt im Negativen, d.h. für das integral ist B = -A und damit A+B = A+(-A) = 0
-
ja, darfst du.
zuerst noch was anderes:
du kannst das integral -1..1 auf |-1..0| + |0..1| aufteilen (beachte die betragsstriche!). dann kommt die fläche raus, die man vielleicht erwartet hätte.
-
Wenn du es so machst, kommt übrigens 1/2 raus.
-
Danke dir, jetzt ist mir das auch klar!
Also die nächste Aufgabe:
1. int[0 ... 1] x² * e(x3+1) * dx
2. int[0 ... 1] x*sin(x^2) *dxMeine Ergebnisse:
1. [1/3 e(x3+1)] (in den Grenzen von 0 - 1) => 1,556924757
2. [- cos (x²)] (in den Grenzen von 0 - 1)[ Dieser Beitrag wurde am 18.05.2003 um 18:31 Uhr von Tobsen editiert. ]
-
Die erste scheint richtig zu sein.
Muß bei der zweiten nicht noch ein 1/2 dazu?
-
1. ja
2. siehe Jester: -1/2 * cos(x²)- ist übrigens ein Klassiker
-
jup, hab das 1/2 übersehen... kommen gleich noch en paar Aufgaben. Big Thx für eure Unterstützung!
-
Original erstellt von Tobsen:
kommen gleich noch en paar Aufgaben.mach schnell.
-
Bestimmt zu folgenden Funktionen eine Stammfunktion:
1. f(x) = 3 / (3x + 1)^2
2. f(x) = x / (5 + x^2)
3. f(x) = x^3 * ln(x^4)Meine Ergebnisse:
1. F(x) = - 1 / (3x + 1)^-1
2. F(x) = 1 / (10 + 2x^2)
3. F(x) = 1/4 * ln(x^4)MfG
Tobsen
-
Original erstellt von Tobsen:
Bestimmt zu folgenden Funktionen eine Stammfunktion:
1. f(x) = 3 / (3x + 1)^2
2. f(x) = x / (5 + x^2)
3. f(x) = x^3 * ln(x^4)
Meine Ergebnisse:
1. F(x) = - 1 / (3x + 1)^-1
2. F(x) = 1 / (10 + 2x^2)
3. F(x) = 1/4 * ln(x^4)1. lass das ^-1 weg
2. 1/2ln(5+x^2)
3. 1/4*x4*ln(x4)-1/4x^4
-
du weißt, dass int(ln(x) dx) = x*ln(x)-x ist?
-
ja, hatte ich vergessen. Kannst du mir vielleicht die Ableitung von e(4z2+2z) verraten?
-
die flaechen dort waren falsch skizziert.
B muss auch zwischen der x achse und dem funktionsgraphen liegen. sonst ist es ja unendlich gross.
-
und falls du Lust hast das int[0 ... 1] e(x2+x)*(x + 0,5) * dx
-
Hey wäre echt nett, wenn jemand obige Aufgabe mit Lösungsweg rechnen könnte, damit ich den nachvollziehen kann. Wir schreiben bald 'ne Klausur und müsst das wissen. Ich komme nicht auf das Ergebnis! Vielen Dank!
MfGTobsen