Rätsel zur Wahrscheinlichkeitsberechnung
-
bug in der forensoftware?
-
wird der Thread archiviert?
-
so einen thread hab ich nie erlebt
-
So cool, so lange gestritten und nun lange dazu geschwiegen. Hab gerade im Schweizer Fernsehen (Sendung PISA) die gleiche Frage gesehen. Dabei wurde sie genau so beantwortet, wie ich hier immer gesagt habe. Die Lösung war 2/3. Gut, die meisten sind bei dieser Frage auch reingefallen und meinten, es sei 50%. Aber das ist falsch. Es sind eingeutig 2/3.
-
Entweder wurde dort eine andere Frage gestellt, oder die Frage falsch beantwortet. Die korrekte Antwort ist definitiv 1/2.
Bye, TGGC (Fakten)
-
Na, da haben wir unseren Patt ja schon wieder.
Also die Frage gestern lautete wie folgt:
Frau Rüdisühli hat zwei Kinder, eines geht schon zur Schule, das andere ist noch ganz klein. Sie wissen nur, dass eines der Kinder ein Junge ist, aber nicht, ob es das grosse oder das kleine ist. Wie gross ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?Zur Erinnerung nochmals die ursprüngliche Frage:
Man bekommt neue Nachbarn, eine Familie mit zwei Kindern. Nun sieht man am Fenster einen Jungen stehen, wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?Ohne irgendetwas frei hinein interpretieren zu wollen, kann man aus beiden Fragen gemeinsam nur herauslesen, dass:
1. Es sind zwei Kinder
2. Eines davon ist ein JungeWenn du noch irgendwas anderes herauslesen kannst, dann ist es frei erfunden und entspricht nicht der Aufgabenstellung. Wie in dem Buch vom Stammtischler hiess es auch hier, die Lösung sei 2/3. Aus genau den Gründen, die ich immer geschrieben habe. Wenn Du mir jetzt mal genau erklären kannst, warum deines richtig sein soll (ohne einfach nur zu sagen: "ICH BIN TGGC, ICH HABE IMMER RECHT") , und zwar mit richtigen Argumenten, dann gehe ich vor dir auf die Knie und gebe dir recht.
Versuchs doch mal! Die Lösung ist in jedem Fall 2/3!
-
Deine Aufgabenstellung ist absolut eindeutig. Da kommt auf jeden Fall 2/3 raus. Bei der anderen Aufgabenstellung kann man schon ruminterpretieren: Entweder man verwendet die Information so wie Du, oder man behauptet, man macht diese Beobachtung nur mit einer gewissen Wahrscheinlichkeit. Im zweiten Falle kommt 1/2 als Wahrscheinlichkeit raus.
-
Ok Jester. Bitte lass mich nicht dumm sterben. Wo ist der Unterschied? Bei einer mathematischen Aufgabe kannst du noch nicht irgendwas interpretieren, sondern musst die Fakten nehmen. Also ich sehe bei den beiden Aufgaben keinen Unterschied. Bitte sag sie mir!
-
Jester schrieb:
Deine Aufgabenstellung ist absolut eindeutig. Da kommt auf jeden Fall 2/3 raus. Bei der anderen Aufgabenstellung kann man schon ruminterpretieren: Entweder man verwendet die Information so wie Du, oder man behauptet, man macht diese Beobachtung nur mit einer gewissen Wahrscheinlichkeit. Im zweiten Falle kommt 1/2 als Wahrscheinlichkeit raus.
Naja, in der Aufgabe steht:
Nun sieht man am Fenster einen Jungen stehen,
Was gibt es daran zu interpretieren oder über welche Wahrscheinlichkeit ließe sich hier spekulieren? Es ist hier m.E. nicht von Belang, mit welcher Wahrscheinlichkeit ein Junge am Fenster stehen kann, sondern es wird gefordert, dass die Aufgabe unter der Voraussetzung, dass ein Junge am Fenster steht gelöst werden soll.
(Ich denke seit dem Sommer jede Woche mindestens einmal an diese Aufgabe. Hab schon Angst, dass sie mich bis zum Lebensende verfolgen wird... )
-
Hallo dooya
Du bist so ziemlich die letzte Person in diesem Forum, die versteht, was ich meine. Ich habe diese Frage schon fast vergessen gehabt, bis sie gestern Abend im TV wieder kam. Ich klickte (im gleichzeitig laufenden Online-Spiel) in einer Selbstverrständlichkeit auf 2/3. Die meisten Kandidaten im Studio machten aber ein langes Gesicht, als der Moderator erklärte, dass und wie man auf die 2/3 kommt. Gut, das scheint hier ja nicht das Problem zu sein, sondern dass irgendwas an den Fakten ruminterpretiert wird. Kommt mir vor wie jeweils nach einem Abstimmungssonntag in der Schweiz, jeder Politiker interpretiert das Ergebnis so, dass es für ihn stimmt. Und auch hier wird zuviel interpretiert und zu wenig auf die Fakten geschaut. Und die wären eindeutig. Wären....
-
Hallo dooya
Du bist so ziemlich die letzte Person in diesem Forum, die versteht, was ich meine. Ich habe diese Frage schon fast vergessen gehabt, bis sie gestern Abend im TV wieder kam. Ich klickte (im gleichzeitig laufenden Online-Spiel) in einer Selbstverrständlichkeit auf 2/3. Die meisten Kandidaten im Studio machten aber ein langes Gesicht, als der Moderator erklärte, dass und wie man auf die 2/3 kommt. Gut, das scheint hier ja nicht das Problem zu sein, sondern dass irgendwas an den Fakten ruminterpretiert wird. Kommt mir vor wie jeweils nach einem Abstimmungssonntag in der Schweiz, jeder Politiker interpretiert das Ergebnis so, dass es für ihn stimmt. Und auch hier wird zuviel interpretiert und zu wenig auf die Fakten geschaut. Und die wären eindeutig. Wären....
-
Plotter schrieb:
Hallo dooya
Du bist so ziemlich die letzte Person in diesem Forum, die versteht, was ich meine. Ich habe diese Frage schon fast vergessen gehabt, bis sie gestern Abend im TV wieder kam. Ich klickte (im gleichzeitig laufenden Online-Spiel) in einer Selbstverrständlichkeit auf 2/3. Die meisten Kandidaten im Studio machten aber ein langes Gesicht, als der Moderator erklärte, dass und wie man auf die 2/3 kommt. Gut, das scheint hier ja nicht das Problem zu sein, sondern dass irgendwas an den Fakten ruminterpretiert wird. Kommt mir vor wie jeweils nach einem Abstimmungssonntag in der Schweiz, jeder Politiker interpretiert das Ergebnis so, dass es für ihn stimmt. Und auch hier wird zuviel interpretiert und zu wenig auf die Fakten geschaut. Und die wären eindeutig. Wären....
Naja, die Umsetzung von Umgangsprache in eine eindeutige (z.B. mathematische) Notation ist halt ein Problem, dass bis heute noch nicht zufriedenstellend gelöst wurde. Da ist es nicht verwunderlich, dass es zu derartigen Meinungsverschiedenheiten kommt.
-
Da hast du recht. Bin froh, dass wir uns einig sind
-
Bitte, wie oft noch? Zum x-ten Mal kommt jemand mit einer anderen Aufgabe und behauptet: "Er hat es gelöst". Wir haben doch schon oft genug den Unterschied erklärt. 64 Seiten lang. Lernt mal lesen. Autocogito. Et cetera.
Nochmal, ganz einfach: Wen ein Kind am Fenster steht, steht mit p1 das ältere Kind am Fenster und mit 1.0 - p1 das Jüngere. Angenommen, das ältere Kind steht am Fenster, so ist bei einem Jungen, das Jüngere mit 0.5 ein Mädchen, weil die Geburten unabhängig sind (bekommt man auch durch einfaches Abzählen der Möglichkeiten). Genau das gleiche kommt natürlich für den Fall, das das Jüngere Kid am Fenster steht raus. Das macht also insgesamt p = p1 * 0.5 + (1.0 - p1) * 0.5 = 0.5.
q.e.d.
Und ich behaupte sogar, das die andere Aufgabe gar nicht genau lösbar ist. Denn es kommt darauf an, wie man an das Wissen kommt, das ein Junge da ist. Man könnte z.b. die Nachbarin gefragt haben: "Wieviel Jungen haben sie?", und sie antwortet: "Einen", entspricht der Aufgabenstellung, aber das zweite Mädchen ist sicher. Oder man hat gesagt: "Mein Sohn hatte einen blauen Kinderwagen." und sie sagt: "Lustig, wie bei mir.", dann ist die Lösung 0.5.
Bye, TGGC (Fakten)
-
Warum steht denn das ältere Kind mit p1 dort und das jüngere mit 1-p1? Warum steht dort nicht einfach "ein Junge", wie es in der Aufgabenstellung steht? Warum muss du bei dieser eindeutigen Ausgangsstellung noch etwas hineinrechnen? Das geht mir nicht in den Kopf!
-
TGGC schrieb:
Bitte, wie oft noch? Zum x-ten Mal kommt jemand mit einer anderen Aufgabe und behauptet: "Er hat es gelöst". Wir haben doch schon oft genug den Unterschied erklärt. 64 Seiten lang. Lernt mal lesen. Autocogito. Et cetera.
Nochmal, ganz einfach: Wen ein Kind am Fenster steht, steht mit p1 das ältere Kind am Fenster und mit 1.0 - p1 das Jüngere. Angenommen, das ältere Kind steht am Fenster, so ist bei einem Jungen, das Jüngere mit 0.5 ein Mädchen, weil die Geburten unabhängig sind (bekommt man auch durch einfaches Abzählen der Möglichkeiten). Genau das gleiche kommt natürlich für den Fall, das das Jüngere Kid am Fenster steht raus. Das macht also insgesamt p = p1 * 0.5 + (1.0 - p1) * 0.5 = 0.5.
q.e.d.
Und ich behaupte sogar, das die andere Aufgabe gar nicht genau lösbar ist. Denn es kommt darauf an, wie man an das Wissen kommt, das ein Junge da ist. Man könnte z.b. die Nachbarin gefragt haben: "Wieviel Jungen haben sie?", und sie antwortet: "Einen", entspricht der Aufgabenstellung, aber das zweite Mädchen ist sicher. Oder man hat gesagt: "Mein Sohn hatte einen blauen Kinderwagen." und sie sagt: "Lustig, wie bei mir.", dann ist die Lösung 0.5.
Bye, TGGC (Fakten)
Die Aufgabe soll unter der Voraussetzung, dass ein Junge am Fenster steht gelöst werden. Wie häufig das vorkommt, oder welches das ältere Kind ist, wird nicht thematisiert.
Stell dir vor, du hast mit einem Würfel eine Sechs geworfen. Wie hoch ist die Wahrscheinlichkeit, dass nach einem weiteren Wurf die Augensumme beider Würfe zusammen 12 beträgt?
-
Moment, meine 3 Beispiel waren noch nicht fertig?! Ich musste so fix zum Bus. Das zweite ist das klassische 2/3. Hier jetzt erst noch 1/2:
Man fragt die Nachbarin: "Einis ihrer Kind hat einen Hund?" - "Na ja, sie wissen doch: Jungs lieben Hunde."Bye, TGGC (Fakten)
-
Du hast wohl ein strenges Wochenende gehabt. Was laberst du da?
-
Plotter schrieb:
Warum steht denn das ältere Kind mit p1 dort und das jüngere mit 1-p1? Warum steht dort nicht einfach "ein Junge", wie es in der Aufgabenstellung steht? Warum muss du bei dieser eindeutigen Ausgangsstellung noch etwas hineinrechnen? Das geht mir nicht in den Kopf!
Ich habe nichts hineingerechnet. Es handelt sich um eine Tautologie.
Bye, TGGC (Fakten)
-
Warum eine Tautologie? Darunter verstehe ich was sinngleiches. Das ist doch nicht das gleiche. Das eine (meines) ist 100%ig, deines ist mit irgend einer Wahrscheinlichkeit. Aber nach der Aufgabenstellung ist es 100%ig, da ja steht "Man sieht einen Jungen". Das ist also mit Sicherheit so, ohne wenn und aber.