Habe ich hier einfach nur Glück oder gibt es eine Erklärung dafür ?
-
knivil schrieb:
Warum weiss der Moderator nicht, welches Tor ich gewaehlt habe? Wozu ist er dann Moderator? Formuliert doch bitte mal die "eure neuen" Spielregeln konkret.
Er ist Moderator, weil er weiß welches Tor richtig ist. Und ja, das ist so sinnlos. (Wie ich schon vor gefühlten 20 Posts geschrieben habe... )
-
cooky451 schrieb:
knivil schrieb:
Warum weiss der Moderator nicht, welches Tor ich gewaehlt habe? Wozu ist er dann Moderator? Formuliert doch bitte mal die "eure neuen" Spielregeln konkret.
Er ist Moderator, weil er weiß welches Tor richtig ist. Und ja, das ist so sinnlos. (Wie ich schon vor gefühlten 20 Posts geschrieben habe... )
Ich war mir nicht sicher ...
-
Déjà-vu schrieb:
Erinnerst mich ein wenig an einen Thread vor zig Jahren, damals ging es um Zugezogene, die von ihren neuen Nachbarn wissen, dass diese 2 Kinder haben.
Eines Tages sehen sie einen Jungen am Fenster. Wie groß ist die Wahrscheinlichkeit, dass er eine Schwester hat?
Damals wurde auf knapp 100 Seiten (!) (hauptsächlich TGGC) gestritten.Achso, die Lösung ist natürlich 2/3 -> 66.6%.
Das stimmt nicht. Die Wahrscheinlichkeit ist nur 2/3 wenn man nur weiss, das entweder das eine _oder_ das andere Kind ein Junge ist. In dem Fall, dass man ein Kind am Fenster sieht, hat man aber nur Informationen ueber eines der Kinder und nicht ueber beide.
-
-
Verwirrung entsteht wohl, wenn man die Wahrscheinlichkeit für den Restbereich nicht sieht.
Marilyn vos Savant meinte ja auch sich vorzustellen, es wären nicht drei Türen zur Auswahl sondern ganz viele, z.B. 1000.
Die Wahrscheinlichkeit bei 1:1000 z.B -> hier genau die richtige Tür zu treffen ist nicht sehr groß. Die Wahrscheinlichkeit dass die richtige Tür unter den anderen ist (999 von 1000!) ist ziemlich groß.
Wenn man jetzt selbst die Tür Nr. 42 auswählt, aber der Moderator läßt genau eine andere, nämlich Tür 729 zur Auswahlentscheidung übrig (alle andern Türen werden geöffnet), dann wirkt das schön sehr schräg und verdächtig.
Na wie auch immer, im Kleinen hat man eine Lösungsverteilung von 1/3 vs 2/3
Wenn aus den 2 Türen plötzlich nur noch eine übrig ist, bleibt die Verteilung trotzdem gleich. Man hat gewisserweise eine Tür aus dem Lösungsraum 2/3 geschenkt bekommen.
So gesehen gewinnt man dann auch auf längere Sicht mit dieser Strategie viel öfter.
-
nachtfeuer schrieb:
Verwirrung entsteht wohl, wenn man die Wahrscheinlichkeit für den Restbereich nicht sieht.
Nein, Verwirrung entsteht, wenn man nicht versteht, was bedingte Wahrscheinlichkeit ist. Waehlt der Moderator die zu oeffnente Tuer, bevor man selbst waehlt so hilft einem das nichts. Tut er es aber danach, so sind die Ereignisse voneinander abhaengig. Genau das gleiche wie bei dem Jungen am Fenster.
Die Sache mit den 1000 Tueren treibt einfach nur den Unterschied zwischen der Wahrscheinlichkeit und der bedingten Wahrscheinlichkeit auf die Spitze, in der Hoffnung das irgendein Depp dann bei 0.4 vs 0.999 den Unterschied endlich bemerkt.
-
Was du als Bug bezeichnest deutet übrigens darauf hin, dass deine Verteilung die tatsächliche Verteilung nicht gut modelliert.
Teste deine Verteilung doch mal mit dem Test. Ich glaube nicht, dass da eine all zu hohe Übereinstimmung rauskommt.
P.S. Nicht vergessen den gesamten (ungefilterten) Datensatz zu verwenden!
-
Mathematikker schrieb:
Was du als Bug bezeichnest deutet übrigens darauf hin, dass deine Verteilung die tatsächliche Verteilung nicht gut modelliert.
Teste deine Verteilung doch mal mit dem Test. Ich glaube nicht, dass da eine all zu hohe Übereinstimmung rauskommt.
P.S. Nicht vergessen den gesamten (ungefilterten) Datensatz zu verwenden!
Hä?? Wie kommt das Posting hier rein, ich war doch eben in einem ganz anderen Thread
-
TGGC schrieb:
Tut er es aber danach, so sind die Ereignisse voneinander abhaengig. Genau das gleiche wie bei dem Jungen am Fenster.
Tatsächlich?
Bedingte Wahrscheinlichkeit wäre doch eher, mit welcher Wahrscheinlichkeit Häufigkeitsverteilungen falsch oder richtig eingeordnet werden und mit welcher Wahrscheinlichkeit man dann richtig liegen kann, wenn man etwa die Stichprobe nur aus Mafiaspielern auswählt.Und wenn der Moderator auf Tür Nr. 729 zu marschiert, und dann zu mir sagt, jetzt wähle du, dann wirkt das immer noch sehr schräg. Aber der Moderator ist ja nur ein Stellvertreter für den Trefferraum.
Wenn der Moderator auch keine Ahnung hätte, hinter welcher Tür was ist, dann können beide, also Moderator und Ich, mit einer Trefferquote von 1:1000 rechnen.
Das wäre spieltechnisch nicht sonderlich spannend.
-
nachtfeuer schrieb:
TGGC schrieb:
Tut er es aber danach, so sind die Ereignisse voneinander abhaengig. Genau das gleiche wie bei dem Jungen am Fenster.
Tatsächlich?
Ja, tatsächlich. Es gibt drei Zufallsversuche, die nacheinander ausgefuehrt werden:
1. Spieler waehlt unter Tueren A,B,C
2. Moderator waehlt unter den Tueren, die nicht den Preis enthalten und nicht bei 1. gewaehlt wurden
3. Spieler waehlt unter den verbleibendenIst hier nur 3. bekannt und man weiss nichts von 1. und 2. so muss man sagen, das die Wahrscheinlichkeit die richtige Tuer zu waehlen 50% ist. Was hier aber immer gefragt sind die Wahrscheinlichkeiten, nachdem in 1. oder 2. schon bestimmte Sachen passiert sind. Konkret, wenn man in 1. die richtige Tuer waehlt, dann gewinnt man wenn man bei seiner Tuer bleibt zu 100%, wenn man in 1. die falsche Tuer waehlt, verliert man zu 100%, wenn man dieser bleibt.
-
Wahrscheinlichkeiten sind so gut wie immer aus einer bestimmten Perspektive
zu berechnen. Wechselt diese, können sich auch die Wahrscheinlichkeiten verändern. Das zu erkennen, ist die eigentlich Schwierigkeit beim Ziegenproblem.
-
Hat der Dalai Lama dir den Tipp gegeben?
-
Nein.
Darauf bin ich vor vielen Jahren selbst gekommen, da ich nämlich zu den Leuten gehörte, die beim Ziegenproblem selbstverständlich spontan auf eine Wahrscheinlichkeit von 1/2 statt richtigerweise 2/3 getippt haben.Dies deshalb weil viele Leute sich bei der zweiten Wahl intuitiv aus der Sichtweise eines gerade hinzugekommen Beobachters betrachten, der von der ersten Wahl bzw. dem ganzen Krimkrams vorher nichts bekommen hat und für den die Wahrscheinlichkeit dann natürlich tatsächlich 1/2 beträgt und nicht 2/3.
Da viele der Leute,die die falsche Lösung produzieren, keine Mathematiker/Physiker/Informatiker (von denen übrigens einige eine Überheblichkeit gegenüber Leuten an den Tag legen, die nicht von ihrem Fach sind, die nicht mehr feierlich ist.)
sind, mag es womöglich hilfreich sein, wenn man eine nicht mathematische Erklärung für den Fehler gibt.
-
Ach, das Ziegenproblem ist so simpel.. einfach aufschreiben:
Türen sind A, B, C. Auto ist bei B.
Wahl A: C wird geöffnet, B -> Gewonnen
Wahl B: A oder C werden geöffnet, Gegenteil -> Verloren
Wahl C: A wird geöffnet, B -> GewonnenDie meisten Leute bedenken einfach nur nicht, dass der Moderator weder das gewählte, noch das richtige Tor öffnet, und man ihn, wenn man auf ein "falsches" Tor setzt, dazu zwingt das andere "falsche" Tor zu öffnen. Und die Wahrscheinlichkeit dafür ist halt 2/3. Eigentlich ziemlich einfach einzusehen, wenn man diese Bedingung beachtet. Was man da mit irgendwelchen Sichtweisen anfangen soll.. na ja.