Veröffentlichung



  • @biter Wenn man von P != NP ausgeht, gibt es für einige interessante Probleme keine Lösung die in Polynomialzeit von einer deterministischen Touringmaschine (einem normalen Computer) berechnet werden kann.

    Ein Prof meiner alten Uni hat mal einen Beweis für P != NP vorgelegt, sich aber wohl in einer der Annahmen verhauen.

    Für die Berechnung der n-ten Stelle der Fibonacci Folge kann man z.B. recht einfach einen iterativen Algorithmus mit Laufzeit O(n) angeben.



  • Ja Schlangenmensch, den linearen Algorithmus für Fibo kenne ich. Mein Verfahren gibt eine Lösung, für eine ganze Klasse von Problemen, wie die rekursive Fibo-Berechnung, als lineare Funktion O(n) an. Nicht nur für Fibonacci. aber auch nicht für alle Probleme mit exponentiellem Aufwand.



  • Gibt es denn Probleme, die du mit deinem Algorithmus schneller/einfacher lösen kannst als schon bekannte Algorithmen?

    -> das wäre interessant, könntest du dann ein Beispiel geben?

    Bei Fibonacci kommst du auch durch Matrix-Potenzierung, also [1110]n\begin{bmatrix}1 & 1 \\ 1 & 0\end{bmatrix}^n zum Ziel.



  • Mein Verfahren ist ein rekursives Gerüst indem zwei beliebige Funktionen vorkommen die dann auch im der linearen Lösung stecken, also ziemlich variabel. Deshalb spreche ich von einer Klasse von Problemen. Allerdings kenne ich kein anderes Problem, das sich damit lösen lässt, ich vermute aber dass es die gibt.



  • Ich bin in dem Thema überhaupt nicht mehr drin und es kommt auch kein Widerspruch, deshalb frage ich mal nach:

    Warum hat die Berechnung der n-ten Fibonacci-Zahl (darum geht es doch oder?) "exponentiellen Aufwand"?
    Jetzt mal abgesehen von der geschlossenen Form ist das doch auch sonst einfach nur eine Schleife, um die Zahl zu berechnen!?



  • Folgendermassen:

    rekursiv:
    fibo(N)
    if N==1 return 1;
    if N==2 return 1;
    return fib(N-1) + fibo(n-2);

    Jeder Aufruf ( >= 3 ) hat zwei weitere Aufrufe zur Folge also rekursiv und exponentiell.

    iterativ:
    fiboi(N)
    if N==1 return 1;
    if N==2 return 1,
    K = 1; G = 1;
    for(int i=3; i<=N; i++)
    {
    S=K;
    K=G;
    G=S + G;
    };
    return G;


  • Mod

    Und? Ist deine große Erkenntnis jetzt, dass man viel schneller von Gütersloh nach Bielefeld kommt, wenn man nicht über den Pluto fliegt? Ich kann dir auch Additionsalgorithmen hinschreiben, die exponentielle Laufzeit haben.



  • Also dann lassen wir das eben, führt sowieso zu nichts, gebt mir lieber Auskunft über das Copyright im Forum !!! Die Lösung bei fibox von rekursiv nach iterativ, ist nur ein Spezialfall von meiner grossen Erkenntnis ...Ob die so gross ist weiss ich auch nicht, habe es oben auch nicht behauptet ...jedenfalls veröffentlichenswert ...Wollte nur Jockelx erklären worum es geht ...



  • @biter sagte in Veröffentlichung:

    Wollte nur Jockelx erklären worum es geht

    Ja, Dankeschön,, jetzt habe ich glaube ich verstanden, worum es dir geht...die Fibonacci-Folge hat jetzt mit deiner Arbeit überhaupt nichts zu tun, sondern war nur ein Beispiel für etwas was, du allgemein (mehr oder weniger) lösen kannst.



  • Im Forum "veröffentlichen"? Das kann ja kaum dein Ernst sein.

    Als Nichtakademiker sind dir die üblichen Wege verschlossen, aber du könntest z.B. bei vixra.org publizieren. Das hat auch nicht den besten Ruf, aber das liegt in der Natur der Sache.



  • Also das ist unverschämt !!! Tschüsss ....



  • Hä? 🤔



  • @Bashar sagte in Veröffentlichung:

    Hä? 🤔

    Liegt nicht an dir; ich verstehe die Antwort auch in keinster Weise.



  • @biter sagte in Veröffentlichung:

    Also wenn ich keine Möglichkeit, finde das in Zeitschriften zu veröffentlichen, veröffentliche ich es hier im Forum, kann man hier auf sein Urheberrecht pochen ?
    Müsste man dann seinen richtigen Namen offenlegen ? Der eine Lösungstext ist nur vergleichsweise kurz ...

    Pochen kannst du drauf. Aber in der heutigen Zeit schreckt das kaum jemanden ab. Ich würde es in Form eines Papers mit realem Namen machen. Da gibt es sicher passende Konferenzen, die sich mit dem Thema beschäftigen.



  • @biter
    Hast du jemanden in deinem Bekanntenkreis, der sich das mal angucken kann? Ich will dir nicht zu nahe treten, aber ich bin da auch eher skeptisch. Vielleicht bist du ein Andrew Wiles, aber vielleicht auch nicht. Und wenn du jemanden mit Fachkenntnis hast, kann der dir eventuell sagen, ob du deine Arbeit veröffentlichen oder besser noch mal überarbeiten sollst.



  • @biter sagte in Veröffentlichung:

    hustbaer, Dir könnte es auch passieren, dass Du etwas findest, (...)

    Den Teil meinte ich nicht. Ich bin zwar generell skeptisch ob du das was du meinst gefunden zu haben auch gefunden hast. Aber ich hab da keine feste Meinung dazu, kann ja sein und ist mir im Prinzip auch egal. Ich meinte diesen Beitrag:

    @biter sagte in Veröffentlichung:

    Ich möchte ja nicht angeben, aber sollte man sowas wie Exp ==> Linear überhaupt entwickeln ? Was ist aus der Kernkraft geworden ? Die Atombombe !!! Wenn sich ein Terrorist diese Technologie unter den Nagel reisst, und ein Virus entwickelt, gegen das man keine Chance hat ? Ich möchte nicht hochnäsig sein, aber das beschäftigt mich, andererseits könnte man so eine Technologie bei der Entwicklung eines Corona-Imfstoffes einsetzen ? Dann hätte ich meine Zusammenarbeit ..

    Wenn ich das lese kann ich mir halt nur denken: entweder du trollst oder du bist ein bisschen irre oder stehst unter Drogen. Könnten freilich auch ganz natürliche Endorphine oder dergleichen sein, getriggert durch deine Aufregung. Keine Ahnung.



  • Mehr zum Thema: Du kannst dir auch ein gratis Blog zusammenklicken (Wordpress, ...) und das was du gefunden hast als eine Reihe von Blog Artikeln veröffentlichen. Und dann den Link hier und auf anderen Plattformen posten. Das würde ich eher machen bevor ich hier im Forum was "veröffentliche". Ist sicher nicht mehr Aufwand als zu versuchen es in einem Journal veröffentlicht zu bekommen.

    Wenn das dann mal online steht, könntest du versuchen Leute zu erreichen die sowas interessieren könnte. Speziell wenn wirklich was dran ist und das für Mathematiker spannend ist würde ich meinen dass z.B. Mathe-YouTuber daran interesse haben könnten. Also Kanäle wie Numberphile oder Leute wie Matt Parker oder Burkard Polster (aka. Mathologer, der übrigens auch Deutsch spricht).



  • Also Bashar, entschuldigung ! Habe es falsch eingeordnet ! Als Nicht-Akademiker ist man immer etwas im verteidigen. Es stimmt schon bei den Universitäten habe ich keine Resonanz erhalten. bis auf die Antwort von der FernUni Hagen, da hat mir ein Professor sogenannte PrePrintServer empfohlen. Also die Möglichkeit einer Website, prüfe ich noch, muss mich mit responsivem Webdesign befassen oder benutze Wordpress. Ich weiss schon ! wenn man sowas behauptet stösst man erstmal auf Skepsis. Nur noch ganz kurz, die Wunderwaffe für exp ==> linear habe ich definitiv nicht ! gefunden, nur für bestimmte Fälle, zB dann wenn Symmetrien, Redundanzen, vorhanden sind. Eine Idee für jedes zu optimierende Programm, sofern es zu optimieren ist, eine Lösung zu finden ist das Ziel, aber wahrscheinlich nicht zu erreichen. Das Projekt habe ich "AlgoTrans" genannt. Dann habe ich mich noch an die Gesellschaft für Informatik gewandt, mal sehen ob ich da ein Antwort bekomme ...



  • Ja ! ich stehe unter Drogen !, starke Medikamente wegen meiner Krankheit. Das entschuldigt nicht alles, solltet Ihr aber berücksichtigen. Kriege öfter was in den falschen Hals, schöpfe Verdacht ...Aber einen Beweis zu führen, kann ich schon



  • @biter sagte in Veröffentlichung:

    Mein Verfahren ist ein rekursives Gerüst indem zwei beliebige Funktionen vorkommen die dann auch im der linearen Lösung stecken, also ziemlich variabel. Deshalb spreche ich von einer Klasse von Problemen. Allerdings kenne ich kein anderes Problem, das sich damit lösen lässt, ich vermute aber dass es die gibt.

    Ich hab nun von Mathematik keine Ahnung, aber vielleicht kann hier jemand, der etwas davon versteht, mal ein oder zwei entsprechende Probleme beschreiben, und Du prüfst mal, ob Dein Verfahren da leistet, was Du Dir vorstellst?


Anmelden zum Antworten