DEG, RAD, GRAD
-
Hallo,
was hat es damit auf sich?
Wofür steht GRAD, wofür DEG ond wofür RAD?Ich dachte eigentlich, dass ich auf GRAD umschalten müsse, wenn wir für die Winkelrechnung in Physik an der schiefen Ebene arbeiten, aber Pustekuchen, DEG war richtig.
Mein Lehrer meinte, dass GRAD von einem 400° Kreis ausgeht... oONaja, jetzt bin ich ein wenig verwirrt, wer kann mich aufklären? ^^
MfG MAV
-
Nee nee GRAD hat nicht mit einem Kreis mit 400° zu tun
Der Modus GRAD liefert für einen angegebenen Winkel den Neugrad zurück. Das Neugrad (Gon) ist in der Geometrie der vierhundertste Teil des Kreises oder π/200. Eingeführt wurde es, damit man eine dezimale Darstellung von Winkeln der Form 32°12'56" haben konnte.
-
DEG ... Degree (Der volle Kreis hat einen Winkel von 360°
RAD ... Radian (Der volle Kreis hat einen Winkel von 2*PIGRAD ... Neugrad (Wie oben)
-
CengizS schrieb:
Nee nee GRAD hat nicht mit einem Kreis mit 400° zu tun
Der Modus GRAD liefert für einen angegebenen Winkel den Neugrad zurück. Das Neugrad (Gon) ist in der Geometrie der vierhundertste Teil des Kreises oder π/200. Eingeführt wurde es, damit man eine dezimale Darstellung von Winkeln der Form 32°12'56" haben konnte.
Ähm... das was du da erklärst, das ist doch genau das, was er mit 400° meinte! Wenn man sagt, der Kreis hat 400 Grad, dann ist ein solcher Grad folglich auch der 400. Teil des Kreises!
-
CengizS schrieb:
Nee nee GRAD hat nicht mit einem Kreis mit 400° zu tun
Natürlich hat der Neugrad was mit einem Kreis zutun. Der rechte Winkel ist bei Neugrad 100 ein gestreckter Winkel 200 und ein foller Umlauf, also ein Kreis, 400
-
Danke, jetzt bin ich aufgeklärt.
-
Noch zu RAD, das ist die Strecke auf dem Einheitskreis, welche zum Winkel gehört. Deshalb ist es für den ganzen Kreis gerade 2 Pi.
-
lustig schrieb:
Noch zu RAD, das ist die Strecke auf dem Einheitskreis, welche zum Winkel gehört. Deshalb ist es für den ganzen Kreis gerade 2 Pi.
Versteh ich nicht, was ist ein Einheitskreis und von welchem Winkel redest du?
-
@Online, Jan:
Man könnte höchstens Neugrad sagen aber Grad wäre falsch. Selbst die Bezeichnungen auf den Taschenrechnern (GRAD) werden von manchen Herstellern mit GON ersetzt.
-
Der Einheitskreis ist ein Kreis mit dem Radius 1. Wenn man 360° hat, so entspricht dieser Winkel einer Länge von 2Pi auf dem Einheitskreis. 180° entspricht dem halben Kreisumfang, also Pi. So entspricht das RAD immer der Länge des Kreisbogens mit dem Radius 1 und dem Winkel. Hoffentlich ist das ein bisschen verständlicher.
-
Ja, jetzt verstehe ich es schon eher.
Was ist PI noch gleich?
Der Umfang eines Kreises mit Radius 1 oder wie?Und irgendwie bekam man PI doch auch durch oder so raus, oder?
Mfg MAV
-
Mis2com schrieb:
Der Umfang eines Kreises mit Radius 1 oder wie?
Der Umfang eines Kreises mit Radius 1 ist , ist also der halbe Umfang.
Und irgendwie bekam man PI doch auch durch oder so raus, oder?
Meinst Du ?
-
tan^(-1) was ja wohl arctan bedeuten soll gibt jedenfalls aus:
DEG: 45
RAD: 0.79
GRAD: 50Also nix PI
-
Es muss lauten ...
-
Na toll, aber man kann die Arcustangenz doch bei RAD sowieso nicht ohne PI berechnen, oder?
-
Mis2com schrieb:
Na toll, aber man kann die Arcustangenz doch bei RAD sowieso nicht ohne PI berechnen, oder?
Was meinst du damit?
-
Wenn bei RAD der Kreis durch 2PI begrenzt wird, dann benötigt man um die Acrustangenz auszurechnen ja wohl auch PI (ich weiß es nicht, wie man Sinus etc. berechnet ist noch nicht bekannt).
Also ist 4atan(1) keine alternative Möglichkeit an PI heranzukommen.
Das dachte ich nämlich...
Aber wieso ist in einem rechtwinkligen Dreieck bei dem Verhältnis 1 zu 1 von Gegenkathete und Ankathete der Winkel Alpha = PI/4?
(hoffe, ich habe jetzt nichts verwechselst ^^''')
Wie kommt's?MfG MAV
-
Mis2com schrieb:
Wenn bei RAD der Kreis durch 2PI begrenzt wird, dann benötigt man um die Acrustangenz auszurechnen ja wohl auch PI (ich weiß es nicht, wie man Sinus etc. berechnet ist noch nicht bekannt).
Nein, sinus und cosinus sind ueber Potenzreihen definiert, dass man damit Winkel ausrechnen kann, ist nur eine Folge davon.
Aber wieso ist in einem rechtwinkligen Dreieck bei dem Verhältnis 1 zu 1 von Gegenkathete und Ankathete der Winkel Alpha = PI/4?
Naja, stellt Dir halt so ein Dreieck vor: rechtwinklig und gleichseitig. Damit bleibt alpha kaum was anderes uebrig, als 45Grad, also Pi/4 zu sein.
-
CengizS schrieb:
@Online, Jan:
Man könnte höchstens Neugrad sagen aber Grad wäre falsch. Selbst die Bezeichnungen auf den Taschenrechnern (GRAD) werden von manchen Herstellern mit GON ersetzt.Ich hab ja auch nicht behauptet das die Bezeichnung für Neugrad "Grad" ist.
-
Naja, stellt Dir halt so ein Dreieck vor: rechtwinklig und gleichseitig. Damit bleibt alpha kaum was anderes uebrig, als 45Grad, also Pi/4 zu sein.
Äh stimmt.
Hm, wie sind denn Sinus und Cosinus und die anderen Funktionen zu berechnen?
Da es zum Verhältnisse geht, werden Sinus/Cosinus/Tangenz ja wohl unabhängig von DEG RAD und Neugrad zu berechnen sein, oder?
Und warum GON (oder was das war)?MfG MAV