Rätsel zur Wahrscheinlichkeitsberechnung
-
finix schrieb:
Optimizer schrieb:
finix schrieb:
Optimizer schrieb:
Weil du zu dem anderen Punkt noch eine Äußerung wolltest: Nein P("2 Mädchen") ist nicht 0, sondern es ist nur der Fall eingetreten, dass es nicht so ist, du musst entsprechend die richtigen Wege im Entscheidungsbaum verfolgen.
Wie hoch ist die Wahrscheinlichkeit dass diese Familie 2 Mädchen hat, wenn nicht 0?
Habe ich bestritten, dass sie 0 ist?? Habe ich das? Nein. Ich habe gesagt, dass unter der Bedingung ... blabla ... die Wahrscheinlichkeit für ww gleich 0 ist. Der Begriff "bedingte Wahrscheinlichkeit" sagt dir aber nichts, weil es auch nach dem 3ten mal noch nicht bei dir ankommt. Es ist hoffnungslos. Es ist so krass hoffnungslos, weil du sogar das fett geschriebene einfach ignorierst, weil du es halt nicht kennst.
Opti, Opti, Opti... um mich mal kurz auf dein Niveau herabzulassen: du hast offensichtlich keine Ahnung.
Wenn ich nicht gerade sehr erfolgreich eine Prüfung hinter mich gebracht hätte, würde ich mich über deine Ausdrucksweise und deine Starrköpfigkeit, die einfach nur sinnloses dagegen-anreden eines Kleinkinds sein könnte (so ganz ohne es besser zu wissen und zu begründen bzw. etwas zu widerlegen), ärgern. So teile ich dir hiermit nur mit, dass du mir keine weitere Antwort wert bist, die du eh nicht liest und schon gar nicht erst versuchst, zu verstehen. Also für mich Diskussion (mal wieder) beendet.
Juhu. Wir haben recht. Ihr leider nicht. Nehmt's nicht schwer, beim nächsten Mal vielleicht!
-
Haa, oh je. Du bist wirklich putzig, Opti, das muss man dir lassen.
Ist dir eigentlich aufgefallen dass du der einzige bist der, zumindet seit der Thread wieder aufgeflammt ist, kein Posting verfasst hast ohne persönliche Beleidigungen etc loszulassen? Und dann willst du mir so einen Schwachsinn vorwerfen? ROFLMAO.
Nicht dass deine Trollfähigkeiten an seine heranreichen würden, aber in punkto planloser Arroganz hast du deinen großen Verbündeten, wenigstens in diesem Thread, doch deutlich überflügelt.
Es wundert mich nur dass dir mein Punkt mal wieder schlicht "keine weitere Antwort wert" war und du nicht noch die ein oder andere haltlose Behauptung eingestreut hast.
Oh, warte, das hast du: "[Ich hab recht, ihr seid alle blöd, und jetzt halt ich mir einfach die Ohren zu, la la la!]"p.s. Glückwunsch zur bestandenen Prüfung (ehrlich!) - dann hast du ja jetzt nach dem ganzen Stress Zeit mal nach "Ad Hominem" zu googeln!
-
finix schrieb:
Haa, oh je. Du bist wirklich putzig, Opti, das muss man dir lassen.
Das stimmt einfach schlichtweg nicht. Ich habe dich nirgendwo beleidigt. Aber so wie du mit mir redest, brauchst du dich über weiteres nicht zu wundern.
Und es hat auch nichts mit Arroganz zu tun, eine korrekte Meinung zu vertreten. Arrogant war mein letztes Posting, allerdings völlig absichtlich. Ich habe kein schlechtes Gewissen, mit dir so zu reden, weil es einfach wahnsinnig unspaßig ist, gegen *gar nichts* immer sinnvoll gegenargumentieren zu sollen. Ich kann es einfach genauso machen, mit den "keine Ahnung haben"-Vorwürfen habe ich nämlich nicht begonnen.
Juhu. Wir haben recht. Ihr leider nicht. Nehmt's nicht schwer, beim nächsten Mal vielleicht!
-
Optimizer schrieb:
finix schrieb:
Haa, oh je. Du bist wirklich putzig, Opti, das muss man dir lassen.
Das stimmt einfach schlichtweg nicht. Ich habe dich nirgendwo beleidigt. Aber so wie du mit mir redest, brauchst du dich über weiteres nicht zu wundern.
also ich habe den thread nur teilweise verfolgt. aber hier muss ich optimizer recht geben. derjenige der ununterbrochen beleidigen wird ist eher finix. unabhängig davon wer nun recht hat, finde ich das ziemlich unangemessen.
-
Ich bin jetzt gerade erst auf dieses Thema gestoßen, und die wahnwitzige Fülle von Beiträgen hat mich nur verblüfft. Um meinen Senf dazu abzugeben, hier nochmal die Aufgabenstellung (gg):
Man bekommt neue Nachbarn, eine Familie mit zwei Kindern. Nun sieht man am Fenster einen Jungen stehen, wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?
Das ein Junge am Fenster steht ist nach dieser Aussage fix vorgegeben, das heisst, dass es nie zu jenem Fall kommen kann, dass ich solala vors ein Nachbarhaus trete und ein Mädchen sehe. Wenn es doch passieren sollte dann wird dieser Fall ausgeschlossen, da es die Bedingung "Nun sieht man am Fenster einen Jungen stehen" nicht erfüllt.
So, es gibt meiner Meinung nach drei Fälle, welche eintreten können (wobei jede dieser drei Fälle natürlich gleich wahrscheinlich ist):
Fall A: Es sind zwei Jungs: Hier ist das ergebnis eindeutig, das andere Kind ist ein Junge.
Fall B: Das erste ist eine Junge, das zweite ist ein Mädchen: Hier sieht man den ersten Jungen am Fenster, und das zweite ist ein Mädchen.
Fall C: Das erste ist ein Mädchen, das zweite ist ein Junge: Hier sieht man den zweiten Jungen am Fenster, und das erste ist ein Mädchen.Daraus sieht man, dass 2 aus 3 Fällen zu einem Mädchen führen würde, was zu einer Wahrscheinlichkeit von 2/3 für ein Mädchen sprechen würde.
Einen Fall D mit zwei Mädchen kann es ja aus der Bedingung, dass er einen Jungen sieht, nicht geben.
Das wichtige bei der Aufgabe ist doch, dass man aus der ersten Messung nicht weiss, ob es das erste, oder zweite Kind ist.
Gibt es in meiner Argumentation jetzt irgendwelche Widersprüche?
-
Juergonaut schrieb:
So, es gibt meiner Meinung nach drei Fälle, welche eintreten können (wobei jede dieser drei Fälle natürlich gleich wahrscheinlich ist):
nein, eben nicht. bei der kombination junge + junge ist doch die wahrscheinlichkeit doppelt so hoch, daß ein junge am fenster steht.
-
Hallo Scrup, die Bedingung dass ein Junge am Fenster erscheint ist ja gegeben, das heist wenn eine Familie aus einem Jungen und einem Mädchen besteht, nehme ich sowiso nur jene Fälle in das Zufallsexperiment auf, in denen der Junge am Fenster steht, also selbst in Familien die einen Junge und ein Mädchen haben zähle ich nur jene Fälle, die nach der Bedingung betrachtet werden, also immer den Jungen, und somit ist die Warscheinlichkeit in einer Jungen Jungen Familie einen Jungen am Fenster zu sehen nicht größer, weil man sowiso nur Fälle betrachtet, wo der Junge am Fenster steht ...
-
scrub schrieb:
MM JJ MJ JM | | /\ /\ | | / \ / \ M| J| M/ \J M/ \J steht am femster | | / \ / \ | | / \ / \ 1 1 0.5 0.5 0.5 0.5
-
Hallo Scrup, jetzt ist mir die Sache erst klar geworden, du hast recht. Aber ist schon ein verzwicktes Problem, wie man an der Länge des Threads ja sehen kann
Ist im Nachhinein ja eigentlich auch Paradox zu glauben, nur weil man das Geschlecht des einen Kindes kennt auf das andere "besser" schließen zu können. Also 50% ist das andere ein Mädchen und passta
Auf weitere so berauschende Probleme
-
scrub schrieb:
Juergonaut schrieb:
So, es gibt meiner Meinung nach drei Fälle, welche eintreten können (wobei jede dieser drei Fälle natürlich gleich wahrscheinlich ist):
nein, eben nicht. bei der kombination junge + junge ist doch die wahrscheinlichkeit doppelt so hoch, daß ein junge am fenster steht.
Wo stehet da, dass die Beobachtung des Kindes zufällig ist?
"Eines der Kinder ist ein Junge " ist 100% korrekt dies eliminiert genau die Möglichkeit Mädchen-Mädchen.
"Eines zufällig beobachtetes Kind ist ein Junge" dies sagt nix über das andere Kind aus weil unabhängig.und da beide Lösungen nicht gleich sind, ist es nicht entscheidbar.
-
Warum sollte die Ausgangssituation nicht genau definiert sein? Sie ist es doch, siehe Aufgabenstellung:
Man bekommt neue Nachbarn, eine Familie mit zwei Kindern. Nun sieht man am Fenster einen Jungen stehen, wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?
Diese Aufgabenstellung könnte sogar durch ein Experiment nachgebildet werden, und wenn man dieses Experiment oft genug durchführt wird die Wahrscheinlichkeit dass es ein Mädchen ist auf eine Prozentzahl konvergieren. Und wenn das passiert, dann kann man es auch berechnen.
Ein Experiment: Du Erschaffst dir eine Zufällige Familie mit zwei zufälligen Kindern. Dannach lässt du eines der beiden Kinder (der Zufall entscheidet welches) ans Fenster treten. Ist es ein Junge ist die Bedingung für das Experiment erfüllt und dann zählst du die Geschlechter des anderen Kindes. Ist es ein Mädchen, so brichst du dieses Experiment ab, weil es eine Bedingung nicht erfüllt hat.
Wo ist jetzt das Problem
-
hihi, lies doch einfach den ganzen thread durch... dann siehst du das problem relativ schnell.
-
scrub schrieb:
hihi, lies doch einfach den ganzen thread durch... dann siehst du das problem relativ schnell.
Der Kern des Problem ist, dass jeder Recht haben will und sich hier ne Menge Klugscheißer rumtreiben
-
"Man bekommt neue Nachbarn, eine Familie mit zwei Kindern. Nun sieht man am Fenster einen Jungen stehen, wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?"
wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?
ergo 50% keine Bedingung...
wie groß ist die Wahrscheinlichkeit, dass die Familie zwei Jungen hat?
33% da hier die bedingte Wahrscheinlichkeit vorhanden ist. Wie tausendfach erwähnt...
Das Problem ist, da wir Menschen in "Ähnlichkeiten" denken.
Dein Kind ist gernen Schokokekse und die Musilkekse bleiben immer liegen, aus erziehungstechnischen Gründen, soll es nun immer mit verbundenen Augen ein Keks ziehen.
Du packst 9 Müsliekekse und ein Schokokeks in die Dose, und dein Kind soll einen rausnehmen ohne zu gucken.
Du kommst zurück in die Küche und siehst dein Kind mit schokoladen-verschmierten Gesicht den Schokokeks essen. Dann bekommt's bestimmt eine Standpauke.
Wären aber in der Dose 900 Müslikekse und 100 Schokoladenkese. Müsste er sich nichts anhören.
zwar gleiche Wahrscheinlichkeit aber trozdem erscheint den Meisten der erste Fall fast ausgeschlossen...Ich hoffe hierbei nur das auch Richter sich dessen bewust sind...
grüße
/Edit: Fehler
-
Cyriz schrieb:
wie groß ist die Wahrscheinlichkeit, dass das andere Kind ein Mädchen ist?
ergo 50% keine Bedingung...
wie groß ist die Wahrscheinlichkeit, dass die Familie zwei Jungen hat?
33% da hier die bedingte Wahrscheinlichkeit vorhanden ist. Wie tausendfach erwähnt...
Huh? Wie paßt denn das jetzt zusammen? Wenn die Chance für das andere Kind 50:50 ist, dann ist doch auch die Wahrscheinlichkeit für zwei Jungen 50:50. Ein Junge ist ja schließlich gegeben und für den anderen steht's 50:50.
-
Ne du hast mich falsch verstanden:
Ein Junge ist ja schließlich gegeben
naja, und da finde ich kommt es auf die Formulierung an...
erfragt man nun die bedingte P oder nur P?Und ich finde eben in dem Beispiel wird die normale P(Kind-Geschlecht) erfragt.
Da tut dies nix zu Sache ob vorher schon was erwähnt wurde oder nicht.
Also Junge oder Mädchen.
Das hat ja nichts damit zu tun was schon war
wenn der Wortlaut ist:[...]dass das andere Kind ein Mädchen ist?
anders natürlich wenn man die bedingte P() erfragt
P(Familie-mit-unteschiedlich-Geschlecht-der-Kinder)
dann muss man den Fall Mädchen/Mädchen ausschließen da bereits ein Junge vorhanden ist.
Dann wäre diese P wohl 2/3 und die P(gleich-geschlechtliche-Kinder), in Betracht das es bereits ein Jungen gibt, 1/3.Kommt drauf an wie man die Frage interpretiert, und ich sehe es eben als eine Frage nach P.
Aber darüber lässt sich auch wieder streiten, wie es nun gemeint ist.
Das meinte ich.
-
Juhu, die Erklaerung auf der Seite ist so genial! http://stabi.hs-bremerhaven.de/mathezirkel/lsg_feb07.html
Ich lach mich nur noch weg. Ich muss den Leuten da erstmal eine Mail schreiben... f'`8k
Gruß, TGGC (making great games since 1992)
-
TGGC schrieb:
Juhu, die Erklaerung auf der Seite ist so genial! http://stabi.hs-bremerhaven.de/mathezirkel/lsg_feb07.html
Ich lach mich nur noch weg. Ich muss den Leuten da erstmal eine Mail schreiben... f'`8k
die mail würden wir gerne sehen.
p.s.: du threadschänder
-
jl klkj ölkj ölkj ölkj lk schrieb:
die mail würden wir gerne sehen.
Ja klar, ich werds posten, wenn sie Antworten. Vielleicht sind es bloss Grundschullehrer und blicken es selber nicht.
Gruß, TGGC (making great games since 1992)
-
TGGC schrieb:
Gruß, TGGC (making great games since 1992)
Schreibst du das immer wieder neu oder kopierst du es von irgendwo her?
Ist doch klar, dass die Chancen sinken, wenn der Junge zuerst geboren wurde.